
to

©

®®

ris;2 2.0 ppOGPAMMiNG

Herbert Shildt and
Robert Goosey

Osborne MCGraw-Hill

Berkeley New York St. Louis San Francisco
Auckland Bogota Hamburg London Madrid

Mexico city Milan Montreal New Dethi Panama city
Paris Sao paulo Singapore Sydney

Tokyo Toronto

Osbome MCGraw-Hill
2600 Tenth Street
Berkeley, CaHforfua 94710
U.S.A.

For information on trauslatious or book distributors outside of the U.S.A.,
please write to Osborne MCGraw-Hill at the above address.

OS/2 2.0 Programming

Copyright © 1993 by MCGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DOC 998765432

ISBN 0-07-881910-5

Publisher
Kerma S. Wood

Acquisitions Editor
Erfuly Rader

Technical Editor
Bob Eidson

Project Editors

Judith Brown
Claire Splan

Copy Editors
Cynthia de Hay
Joseph Ferrie

Proofreaders
K. D. Sullivan
Peter Vacek

Indexer
Phil Roberts

Illustrator
Susie C. Kim

Computer Designer
Stefany Otis

Cover Designer
Studio Silicon

InformationhasbeenobtainedbyosborneMCGraw-Hillfromsourcesbelievedtoberehiable.However,because
of the possibility of human or mechanical error by our sources, Osbome MCGraw-Hill, or others, Osborne
MCGraw-Hill dces not guarantee the accuracy, adequaey, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from use of such information.

CON

INTRODUCTION

ENT

PAPT ONE INTPIODUCTION TO OS/2 PPOGPAMMING

CHAPTER 10S/2:ANOVERVIEW
THE HEPllTAGE OF OS/2 3

THE 80386 AND OS/2: A FAMILY AFFAIPl 7

H THEAPICHITECTUPIEOFTHE80386 I SEGMENTEDAND VIBTUAL

MEMORYMODELS E PIEALVEPSES PPIOTECTEDMODE I PPIOTECTEDMODE

ADDPIESS CALCULATION H THE ADVANTAGES OF PPOTECTED MODE

ADDPESSING I I/OPRIVILEGES I OS/2ANDTHETW080386

0PEPIATIONAL MODES

OS/2 ESSENTIALS 14
H THREADS, PPIOCESSES, AND TASKS I THE OS/2 MULTITASKING MODEL

H INTEPIPPIOCESS COMMUNICATION I OS/2'S PPIOTECTION STPATEGY

I VIPITUAL MEMORY

THE APPLICATION PPIOGPIAM INTEPIFACE 18

DYNAMIC LINKING 19

THE PPIESENThTION MANAGEPl 19

THE OS/2 PHILOSOPHY 20

CHAPTEPl 2 FUNDAMENTALS OF OS/2
PPIOGPIAMMING

THE OS/2 CALL-BASED INTEPIFACE 21

I THECALLFORMAT I EBBOPBETUPIN

A SAMPLE C PPIOGBAM 23

USING STANDAPD HEADEP FILES 26

C AND THE API PAPIAMETEPIS 26
I DATATYPES I NAMINGCONVENTIONS

THE API SERVICES 32
I THE MAJOR API CATEGOPIES

CONVENTIONS USED BY THE API SEPVICES 33
I USING C PPOTOTYPES

PPIOGPIAMMING IN A 32-BIT ENVIPIONMENT 36

I DEFAULT DATA SIZES

A SHOPIT WOPID ABOUT.DEF FILES 37

S

CONTEN

PAPIT TWO PPOGPAMMING THE PPESENTATION

MANAGEP

CHAPTEP 3 PPESENTATI0N MANAGEP
PPOGPAMMING 0VEPVIEW

WHAT IS THE PRESENTATloN MANAGER? 41
I THEDESKTOPMODEL I THEMOUSE I ICONSANDGBAPHICSIMAGES

I MENUS AND DIALOG BOXES

HOW PPESENTATION MANAGEPI AND YOUP PPOGPAM INTEBACT 44
I OS/2lsMULTITASKING I THEAPI I THECOMPONENTSOFAWINDOW

SOME PBESENTATION MANAGEP APPLICATION BASICS 46
I THEMAIN FUNCTloN I THEWINDOWFUNCTloN I WINDOWCLASSES

I THE MESSAGE LOOP H PPESENTATION MANAGEPI DATATYPES

A PPESENTATION MANAGEP SKELETON 48

UNDEPSTANDING THE PPESENThTION MANAGEP SKELETON 51
I OBTAININGANANCHOPBLOCK I CPEATINGA MESSAGEQUEUE

I PIEGISTEPllNG AWINDOWCLASS I CHEATING ASTANDAPDWINDOW

AN EXAMPLE OF THE MESSAGE LOOP 55

PPOGPAM TEBMINATloN 55
I AN EXAMPLE 0F THE WINDOW FUNCTloN

USING A DEFINITION FILE 60

CHAPTER 4 PROCESSING MESSAGES
WHAT APE PPESENTATION MANAGEB MESSAGES? 63

0UTPUTTING TEXT 65
I THE mESENTATioN spACEANDTHEDEvicEcoNTEXT I ppocESsiNGTHE
WM PAINTMESSAGE I DISPLAYINGTEXTINCOLOP I ACCESSINGTHE

PPE-SENTATIONSPACE

PESPONDING TO A KEYPPESS 75
I A BETTEP APPPOACH T0 SCPEEN OUTPUT

PESPONDING TO MOUSE MESSAGES 88

GENEPIATING PPESENTATloN MANAGEB MESSAGES 91
I DEFINING AND GENEPIATING MESSAGES

S

39

63

CON TEN

CHAPTER 5 MESSAGE B0XESAND MENUS
MESSAGE BOXES 98

lNTPODUCING MENUS 103

USING PESOUPICES 104
I COMPILING .Plc FILES

CHEATING A SIMPLE MENU 105

lNCLUDINGA MENU IN YOUP PPOGPAM 106

RECEIVING MENU MESSAGES 109

SAMPLE MENU PPIOGBAM 109

ADDING MENU ACCELEPIATOPI KEYS 114

I LOADING THE ACCELEPATOPI TABLE

CHAPTER 6 DIALOG BOXES
HOW DIALOG BOXES INTEPACT WITH THE USEPl 120

I CONTPOLS I MODALVEPSUS MODELESS DIALOGB0XES

PECEIVING DIALOG BOX MESSAGES 121

ACTIVATING A DIALOG BOX 122

CPIEATING A SIMPLE DIALOG BOX 123

I THE DIALOG BOX PESOUPCE FILE I THE DIALOG BOXWINDOWFUNCTION

I THE FIBST DIALOG BOX SAMPLE PBOGPIAM

PESPONDING TO MULTIPLE DIALOG BOX MESSAGES 129

I THE SECOND DIALOG BOX SAMPLE PPIOGPAM

A NOTE ABOUT USING THE DIALOG EDITOP 135

CHAPTEP 7 CONTPOLWINDOWS
CONTPOL TYPES 138

I ASAMPLE PPIOGPAM SHELL I ADDING CON"OLWINDOWS

BUTTONS 143

LIST BOXES 144
I PIESPONDINGTOALISTBOX I INITIALIZINGALISTBOX

I PPOCESSING A SELECTloN

ENTPIY FIELDS 150

COMBINATloN BOXES 152

SPIN BUTTONS 153

NOTEBOOKS 153

CONTAINEPS 154

VALUE SETS 155

SLIDERS 156

CONCLUDING THOUGHTS 159

S

97

119

137

CONTENT

CHAPTER 8 ICONSANDGRAPHICS
USING SYSTEM DEFINED ICONS AND MOUSE POINTEPS 161

I CHANGINGTHE DEFAULTICON I CHANGING THE DEFAULTMOUSE POINTEP

I DISPLAYING THE ICON AND MOUSE POINTEPI

USING CUSTOM ICONS AND MOUSE POINTEPIS 170
I CPEATINGTHE ICON AND MOUSE POINTEPI I DISPLAYING THE CUSTOM ICON

AND MOUSE POINTEPI

USING GPIAPHICS 175

I THE CUPPIENT POSITION APPPIOACHTOGPIAPHICS I DPIAWING LINES

ANDBOXES I SETTINGTHECUPIBENTPOSITION I ASHOPTGPIAPHICS

DEMO PPIOGPIAM

CONCLUDING THOUGHTS 181

PARTTHREE EXPLORINGTHEAPI

CHAPTEP 9 AN INTPIODUCTION TO MULTITASKING

A WOPID OF CAUTION 186

PPIOCESSES VEPISUS THPIEADS 187

MULTIPLE PROCESSES 187
H STAPITINGA PPIOCESS I WAITING FOPA PPIOCESSTOTEPMINATE

I KILLINGAPPIOCESS I CPIEATINGAN EXITFUNCTION LIST

I EPPIOPI CHECKING

CPIEATING NEW SESSIONS 198
I SELECTING AND STOPPING A SESSION

THPIEADS 202
I CPIEATINGTHPIEADS I WAITINGFOPITHREADSTO FINISH I WAITING

EFFICIENTLY I THREAD PPlloPIITIES I SUSPENDINGTHBEADS

THPEAD PPlloPllTIES 208

CHAPTER 10 SERIALIZATloN AND
INTEP-PPOCESS COMMUNICATION

THE SEPIIALIZATION PROBLEM 213

0S/2 SEMAPHOPIES 215
I CHOOSING THE PllGHT SEMAPHOBE

EVENT SEMAPHORES 217

161

S

183

185

213

CON TEN

I AN EVENT SEMAPHORE EXAMPLE

MUTEX SEMAPHOPES 220
I A MUTEX SEMAPHOPE EXAMPLE

MUXWAIT SEMAPHOPIES 224
I A MUXWAIT SEMAPHOPIE EXAMPLE

SYNCHPIONIZING CPllTICAL SECTIONS OF CODE 228

lNTEPl-PPOCESS COMMUNICATION 231

I SHARED MEMORY

PIPES 234
I JUST A SCPATCH ON THE SUPIFACE

CHAPTER 11 FILE I/0
FILE HANDLES 243

FILE POINTERS 244

OPENING AND CLOSING FILES 244

WRITING TO A FILE 248

A SIMPLE FIRST EXAMPLE 249

I A VAPllATION

PIEADING FPOM A FILE 252

PIANDOM ACCESS 254

APPENDING TO A FILE 257

PIEADING AND WPIITING OTHEPI DATA TYPES 258

PIEADING AND WPITING TO A DEVICE 260

0S/2 STANDAPD DEVICES 263

DISPLAYING THE DIPECTOBY 264

ACCESSING INFOPIMATION ABOUT THE DISK SYSTEM 267

EXAMINING AND CHANGING THE DIPECTOPY 268

CHAPTEP 12 CHEATING AND USING DYNAMIC
LINK LIBRARIES

WHAT IS DYNAMIC LINKING? 271

DYNLINK ADVANTAGES 272

I IMPOPITANT DYNLINK FILES

CPIEATING A SIMPLE DYNLINK LIBPAPY 273

I DYNLINKFUNCTIONS I ASIMPLEDYNLINKLIBBAPY I ACCESSING

DYNLINK FUNCTIONS

IMPORT LIBRARIES 276

THE DEFINITloN FILE 276

241

271

S

ONTEN

E ANOTHER DYNLINK EXAMPLE

RUNTIME DYNAMIC LINKING 283

E LOADING THE DYNLINK LIBRARY E ACCESSING DYNAMICALLY LOADED

FUNCTIONS I UNLOADINGADYNLINKLIBPAPY I APUNTIMEDYNAMIC

LINK EXAMPLE

DYNAMIC LINKING IMPLICATIONS 293

INDEX 295

INTRODUCTION

The purpose of this book is to give you a "jump start" into the world
of OS/2 2.0 programming. OS/2 is a very complex operating sys-
tem,andthewaysthatyou,theprogrammer,caninteractwithos/2
are numerous and varied. This book will help you understand
quickly the essence of programming OS/2 2.0.

What makes OS/2 exciting is that it is a true preemptive multi-
tasking operating system. OS/2 also takes full advantage of the
capabilities and power of the 80386 microprocessors, including
32-bit processing. Although microcomputers have been able to run
multitaskingoperatingsystems,suchasUNIX,forseveralyears,the
resultshavenotalwaysbeenentirelysatisfactory,partlybecausethe
porting of a multi-user, multitasking operating system to a single-
user, highly interactive environment generany produced the worst
of both worlds: slow resporrse time combined with an old, TTY-
based interface. OS/2 2.0 maintains the highly interactive nature of
the personal computing environment, while allowing greater
through-putbymeansoffull32-bitprocessingpowerandpreemp-
tive multitasking.

OS/2 2.0 opens the doors to a whole new world for program-
mers. Fully harnessing the capabilities of OS/2 will allow you to
create highly efficient and powerful programs, the likes of which
could have never been seen in previous operating systems offered
for the personal computing environment.

ix

+,,,,',,,,,,,,,,,,,"I,,,,,,,,,,,,:I,,I,,,I,'',,,+

X OS/22.Oprogramming

ABOUT THIS BOOK

This book was written specifically for OS/2, release 2.0. Release 2.0 of
OS/2 is radically different from its 1.0 to 1.3 predecessors. Very little time
is spent in this book discussing how earlier releases of OS/2 worked. The
reason for this is simple. If you are new to OS/2 programming, this book
contains an the information you will need to understand the OS/2 pro-
gramnring philosophy and its underlying technical details. If you are
migratingfromanearlierrelease,thenthisbookwiugiveyouathorough
understandingofthedifferencesandnewcapabilitiesofrelease2.0sothat
you may begin to incorporate this added power into your applications as
quickly as possible.

As you will see in this book, there is little in OS/2 2.0 that is difficult
to grasp or use. However, OS/2 is so large that it is sometimes hard to see
the larger view. As you begin to leam to program for OS/2, it may seem
difficult to pun all the pieces together, but as you become more experi-
enced,thelogicaldesignofos/2willbecomeapparent.Thisbookcanhelp
you achieve that "view from the top" of OS/2.

This book assumes that you have experience as a programmer and a
basic understanding of how to use OS/2 in the PC environment. The
examples are in C, so a basic understanding of the C programming
language is necessary.

HOW THIS BOOK IS ORGANIZED

PartOneofthisbookgivesyouanoverviewofOS/2,includingalook
at the 80386/80486 processors and some basic programming guidehnes.
If you are familiar with the 80386 processor, and the basic programming
concepts of OS/2, this part may be skipped. However, if you have never
prograrrmed in a 32-bit environment, I suggest you review the 32-bit
programming section in Chapter 2.

Part Two covers the Presentation Manager Apphcation Programming
Interface. Creating windows, interacting with your program through
menus and dialogs, and using the mouse are some of the areas covered. A
chapteronusinggraphicswiththePresentationManagerisalsocontained
in Part Two of this book.

Introduction Xi

Part Three covers the core services of OS/2. This section explains how
tousemultitaskinginyourprogramstounleashthepowerofos/2.Italso
explains how to control separate processes, how to communicate between
processes, perform file I/0, and construct and utilize dynamic linked
libraries.

CONVENTIONS USED IN THIS BOOK

Inthisbook,functiousandkeywordsareshowninboldfacetypealong
with variable names when referenced in text. General forms of variable
namesareshowninitalics.Also,whenreferencingafunctionnameintext,
the name of the function is followed by parentheses. In this way you can
easily distinguish a variable name from a function name.

DISK OFFER

Ifyou'relikemostbusyprogrammers,youwouldprobablyliketouse
the many programs presented in this book, but hate the thought of typing
them into the computer. For this reason the source code to all the functions
and programs contained in this book are made available on disk. So, if
you'd like to spend more time exploring the sample programs, and less
time trying to get the hand keyed-in program to work, simply fill in the
following order form and mail it, along with a check or money order, to
the address shown.
___________________--------------------------------------____--___--_--___-__1

I

I

I

Order Form :
I

Please send me the programs listed in os/2 2.0 progr¢77777".71g on a IBM ;
compatible disk. Enclosed is a check or money order for $24.95. (
Foreign orders only: Checks must be drawn on a U.S. bank, and
please add $5 for shipping and handling.

Name

Address

Telephone

Disk size (check one): 51/4
Send to:

State Zip

31/2

Robert Goosey
OS/2 2.0 Programming Disk
2464 EI Canino Real, Suite 537
Santa Clara, CA 95051
This offer is good through January 1995.

Please allow 3 to 6 weeks for dehivery. Osbome/MCGraw-Hill assumes NO responsibility for this offer.
This is solely an offer of Robert Gcosey, and not of Osborne/MCGraw-Hiu.

ERE:pe:::=ZJ)

:,,I,,,,I,:L,,,,:I,:I:,,,,::,,,,,'':,,,;,1;,,:,,,,',,,:,::,,,,,,:,,,,:,,,1,:,,,,,,ife,:,,i,:,I,,,,:,,,1,,',,,,,,,,,,,,,,,,,I:,,:I,,:,I,,,:,'\,I,,,,,:,I::;,,,,,,1;,',,,,::::I:,,i;::,,,:,,,,,I::,,I,,:,,:,:,,,I,I::,,1,,,,,:,:,,I,,:;;,,:,,:,::,,:I,'':,::,I,,,,,:,,,:'j'':::,',,I:,,;,',,:,:,,,:,,::,,,1,::::,,,,,I::,,:::,:,,::,:,::,,,I,:,,;I:,::I,,::,,:,,I,,:I:,;,I:,,::I,,I,,,I,I,1,'',:I:,I:,,,,,,,,,,,,,:,,,',,,I,,,i:,:,,,1,,,,1,,''''::,,:,,T,,I,,,,,,:,,,,,,,,,:,,,,,,:T,;,i,,,,,,,,,,,:,,,:,,,,I:I,I;,Ill;,:I,:,,:,:,'':;I,''',I,'';,,,I,,,,I::,:::I,,:,,',,,,',,I,,:,',I,,,::,:,::,,:::,,,Ill:,;,I;:,,I::,i',I,,'i`,I,:,,''::'',,,,',,;,:1:,,1:,,:i'::,::,::,:11,,,,:,,I:I:,:,,,,,,'';I:I,:','''''':',I,,,:I,::;::,,,;'':,I:,,::I,;,,,,,,,:I,,,,:ill,,,I,'',,'i,:,,:1,:,,I:,:I,,Ill,,,,I

lNTPODUCTIONTOOS/2

PPOGPAMMING

Part One presents some necessary background information on
OS/2 2.0 and discusses the special 80386 features that OS/2 2.0
exploits. You will learn about OS/2's design philosophy, and you
will be introduced to the basics of OS/2 2.0 programming.

",,,,,,,,,I,:;,,,,,,,,,.,,,,,,,,„,,,,,,i,`,',,,,,",1,i::,:,A,;,"ti,,,;,l`,:,.,I,,,",I,,,,I,':"I:,I

-=EE3g>-

CHAPTER

fls/2:ANOVEPVIEW

OS/2 is a very large program, consisting of many subsystems.
Although no single piece of OS/2 is difficult to understand or use,
what can be difficult is grasping the totality of it. To help alleviate
this problem, this chapter presents an overview of the OS/2 oper-
ating system, including its design philosophy, operation, and its
basis in the 80386 processor. Most of the topics discussed in this
chapter will be fully explored in subsequent chapters.

This chapter begins with a brief description of the origins of
OS/2,followedbyadiscussionofthe80386CPU,anunderstanding
ofwhichissoessentialtoanunderstandingofOS/2programming.
The chapter concludes with a brief tour of the OS/2 programming
environment. Along the way, several new terms that have been
coined or popularized as a result of OS/2 are introduced. If you
alreadyhaveagoodbasicunderstandingofthe80386andofos/2's
operation, you can skip to Chapter 2.

THE HERITAGE OF OS/2

Although OS/2 was created new from the ground up, it owes
muchtotheoperatingsystemsthatprecededit.Tounderstandwhy
certain things in OS/2 are the' way they are requires that you
understand OS/2's heritage. Those of you that participated in the
microcomputer revolution of the late seventies already know much

:,,,,,,,,,,,,,,,;;,,,:,:,,,,,,,,,,,:,,;,,,:,,,,;,,,,,;,:,,;,,,,,:,:,,,,,,,,,,,,,;i;,,,,,,,;;,,,:,I,,,,;,,,,,,,,:,;:,:,i,,,;(,;,,,,,,,,,,,,,,,,,,,;,;,,,,:,,,,:,,:,,,:,,,,,:,,;,,,,,,,,,,,,,,,;,i;,,,,;::i::,,,,,,;,:,:,;;::,:,,,,,,,,:;,,,I,:,,;,;,,:,,,:;,,,,,,,:,,,,,,,,,,,,,;,,,,,,,,,,,,,;,,;;,:,,1;,,,,:",,,,,,,,:,,,,;,,,I:,,,,,,,,,:,,,,,,:i:;,,;;;,,,,,,,,,,,:,,:;;:,,,;;:,;,,,:l,,,,,:,,,,,:,,,,,,,,,,.,,,i,;`,,:,,::,,,,,,,,;,,,",,,,;,,,,,,,,,,,,,,,,;,,,,,",,,,,,,,,,I,,,,,I,,::,::,,,,;,,,,,:,:,:,:,,,,",,,,,,,,;,,„;,,,,,,;,,,;,,,,":,;,,,,,,,,,,"I,,,,I,,,,,,,,,,,,,,,,,I,,",,,,,,,,,,,,,,,.,,,,,":,,,,,,",,",,,;,',,,,,,,",;,";,,,,,,,,,,,,,,,,:,;,,,,,:,,,,,i,,:,;,,,,;,,:;:;,::,:,,;,,,,,,,",,,,,,,,,,,,,,;,,,,,,!:,,,,,;,,1,;,,,;,,,,,,,,,,,,,,;,,::,,,,;,,,,,:,,;,,,,i,,:,,:,,:,,,,,,,,,,,,:,,,:,,,,::,:,::,,,,,,,,,,,,,,,,;,,,,;,,,,,,,,,,,,,,,:,;,:,,,,,,:,,:,,,,,,;,,;,;,,;:,,;,,:,;,:,:,,,;;,,:,,i,;,,,,,,:,,,,,,,,:,,,,,,,,,`,I,,:,,:,;,,,,:,,::,,

4 0S/22.Oprogramming
Chapter 1

of the story. However, if you are new to microcomputers, many of the bits
andpiecesofos/2makethemostsensewhenyouunderstandwherethey
came from. Real microcomputer operating systems began with "gital
Research's CP/M, which was designed for the Intel 8080 CPU, an 8-bit
processor. (The 8080 was the forerunner to the 8086.) In the early days of
microcomputing, each computer manufacturer supplied its own "operat-
ing system," which usually consisted of little more than a primitive set of
disk file I/0 functions. h addition to being very crude, these operating
systems also suffered from the fact that they were different from one
another. The differences between the systems prevented software devel-
opers from developing programs which could be mass marketed to the
full range of microcomputers. When Gary Kildahl, the founder of "gital
Research, created CP/M, it was with the goal of providing a common
operating system for all microcomputers. To a very great extent he suc-
ceededinthisgoal.CP/Misacompact,yethighlyadaptivesingle-tasking
operating system that was nothing short of perfect for the first 8-bit
microcomputers.

What makes CP/M so important is that it made all the various micro-
computers,manufacturedbythethennumerousmanufacturers,software-
compatible.Compatibilitywasacrucial,necessaryingredienttothefuture
success of the microcomputer, because it allowed software developers to
invest large amounts of time and money into creating products that ran
under CP/M. Without the unifying force of CP/M, the software market
would have been fragmented, thus preventing the cost-effective develop-
ment of exceuent software. As you will soon see, the issue of compatibility
plays an important role in the development of OS/2.

When IBM began development of its first personal computer, they
chose to base its architecture on the next generation of Intel microproces-
sors. These processors included the 16-bit 8086 and its close relative, the
8088. (IBM actually used the 8088 because it provided a cost-effective way
to access a 16-bit processor using 8-bit interface chips. From here on, any
reference in this book to the 8086 includes both the 8086 and the 8088.)
Before the PC was released, experts speculated that it would use a new
version of CP/M as its operating system. However, for reasons that are
still unclear, Digital Research and IBM did not come to an agreement to
use CP/M. Instead, IBM asked Microsoft, which was already working on
languages for the PC, to develop a new operating system. The operating
system was called PC-DOS when first released. Now, it is generany re-
ferred to simply as DOS.

OS/2:Anoverview 5
Chapter 1

Because IBM and Microsoft knew that literally thousands of programs
originally written for CP/M would be converted to run under DOS, DOS
was designed to be highly compatible with the original CP/M. In fact, the
basisforthefflesystemandforitssysteminterfacewascp/M.Likecp/M,
DOS is a single-tasking, highly adaptive operating system that could fully
control the new 16-bit microcomputers. Since its release in 1981, DOS has
become the world's most popular operating system with well over
10,000,000 users worldwide. Some analysts suggest that DOS will still be
in common use into the 21st century.

As good as DOS is, it does suffer from two major maladies. First,
becauseitwasoriginallydesignedforusewiththe8086,itcanonlydirectly
access 1 megabyte of RAM. Within this megabyte, only 640K can effec-
tivelybeusedbecauseofthewaytheROMandvideoRAMoftheoriginal
PCwaslocated.Although640Kofprogrammemoryspacestillsoundslike
a lot when viewed from the perspective of many existing DOS applica-
tions, it is far too small for the next generation of "smart" (AI-based)
software or for large database or spreadsheet programs. Also, 640K is not
alotofmemorywhenitisusedinamultitaskingenvironment.Thesecond
drawback to DOS is that it is single-tasking. Without multitasking capa-
bilities, it is impossible to make the most efficient use of the computer. As
you win see later in this chapter, much of the CPU's time is spent waiting
for things to happen. During these "dead" moments, a multitasking oper-
ating system can perform another task. However, in a single-tasking
system this time is simply lost.

The memory restriction found in DOS is based in the architecture of
the 8086 processor and is not easily removed. Although it is possible to
multitask the 8086, it is not a good idea, because the 8086 provides no way
to protect one task from another. That is, if two programs were executed
simultaneously using an 8086 processor, it would be possible for one
program to adversely affect the execution of the second. Because of this,
DOS continues to Hmit application memory to 640K and to remain single-
tasking. It was clear that any efforts to remove these restrictions would
come about because of an advance in CPU design.

The next processor released by Intel was the 80186, which was really
just a faster 8086 and not important otherwise. However, in 1983 Intel
released the 80286. The 80286 CPU could run all programs written for the
8086/88, but included several new instructions and a second mode of
operation. When the 80286 was running in this second mode, it could
address16megabytesofRAMandithadtheabilitytoisolateconcurrently
executing programs from each other. The reason that the 80286 included

6 0S/22.0 programming
___ ____

Chapter 1

two modes of operation was for the sake of compatibility with software
written for the 8086/88. However, the two modes of operation are, more
or less, mutually incompatible with each other. As you will come to
understand, these two modes were the cause of numerous problems in the
creation of the first version of OS/2.

The 80286 is the processor that IBM chose to use in the PC AT,
introduced in 1984. However, because no software existed to make use of
the80286'ssecondmodeofoperation,itwasrunbyDOSsimplyasafaster
8086 with all of the 8086's limitations.

The newest Intel processors in common use are the 80386 and 80486.
The80386isavastlyimprovedversionofthe80286andsupportsfourbasic
modes of operation: 8086 "real" mode, 80286 emulation, virtual 8086, and
its own 80386 operation mode. Actually, because of the way the 80386 is
designed it does not have an 80286 emulation mode as such. The virtual
8086 mode is what gives OS/2 the power to multitask DOS applications.
Moreaccurately,the80386automaticallyactslikean80286whenpresented
with 80286 iustructious. The 80486 is similar to the 80386, but the 80486 has
a math coprocessor built into the microprocessor. This and the inclusion
of anon-boardcacheandotherspeedincreasingenhancements,allowsthe
80486 to outperform the 80386 in many ways. OS/2 2.0 requires the 80386
or the 80486 to run.

In 1987 IBM released its PS/2 hne of personal computers. Although
the low-end PS/2 models are based upon the older 8086 processor, the
models50and60uselntel80286andthemodel80usesthe80386processor.
Totakefulladvantageofthesemachinesrequiredanewoperatingsystem.
Three of the most important goals of this new operating system were to
elininatethe640Kmemorybarrier,tosupportmultitasking,and,forbetter
orworse,toprovideanupwardcompatibilitypathfromDOS.Tothisend,
Microsoft and IBM launched a joint development project, headed by
Cordon Letwin on the Microsoft side and Ed Iacobucci on the IBM side.
The result of their efforts was OS/21.0.

Following the release of 1.0 through 1.3, and partway into the devel-
opmentof2.0,IBMandMicrosoftcontinuedtoworktogetheronOS/2.In
1991,H3MandMicrosofthadapartingofways.Sincethattime,IBMalone
hascarriedoutthedevelopmentofOS/2thoughthereleaseofversion2.0
in the spring of 1992.

From this historical perspective,1et's see what OS/2 2.0 is all about.

OS/2:Anoverview 7
Chapter 1

THE 80386 AND OS/2: A FAMILY AFFAIR

First and foremost, OS/2 2.0 is an 80386-based operating system, but
will also run on the 80486. In many ways, OS/2 is the actualization of the
imaginary operating system for which the 80386 was originally designed.
The Intel designers created the 80386 for a multitasking environment. Its
ability to emulate its forerunners, the 8086 through the 80286, was neces-
sary, but uninteresting. What the designers created was a processor that
could serve as a solid base for the next generation of microcomputer
operating systems. With this goal in mind, they implemented several
important and necessary features that essentially defined what that oper-
ating system would be like. In fact, many of OS/2's features are closely
linked with related features of the 80386. Hence, the understanding of
OS/2 from a programmer's point of view really begins with an under-
standing of the 80386 processor.

Because of its heritage and its attempts to maintain software compat-
ibility with its ancestors, the 80386 is a somewhat "quirky" chip. In fact,
the 80386 actually has four separate modes of operation! h this section we
will discuss some aspects of the 80386 that relate specifically to OS/2
programming.

E Note: Nothing in the sections that follow assume that
you have significant familiarity with 80386 assembly lan-
guage programming. However, implicit to OS/2 pro-

gramming are the concepts of subroutines (both calling and
returning from them), the stack, and stack operations. Sinply put,
you should have, minimauy, some general understanding of how
a computer goes about its business.

THE APCHITECTUPE OF THE 80386
The 80386 contains five classes of registers, into which information is

placedforprocessingorprogramcontrol.Theregistersfallintothefollow-
ing categories:

> Ten general purpose registers

> Six segment registers

8 0S/22.Oprogramming

Chapter 1

> Four protection registers

> Four control registers

> Eight debug and two test registers

The gc77cr¢Z pt/rposc rcg3.sfers are the "workhorse" registers of the CPU.
Theseregistersare32bitswide.Itisintheseregistersthatvaluesareplaced
for processing various operations, including: arithmetic operations, such
as adding or multiplying; comparisons, such as equality, less than, greater
than, and the hke; and branch (jump) instructions. The first four of the
general purpose registers, EAX, EBX, ECX, and EDX, can be accessed in
three ways: as one 32-bit register, as two 16-bit registers, or the lower 16
bits of each register can be accessed as two 8-bit registers. These various
methods of access exist in order to maintain compatibility with previous
generationsofthe8086microprocessorfamily.Thenextfourregisters,EBP,
ESI, EDI, and ESP, can be accessed as either a single 16-bit or 32-bit register.
The remaining two registers, EFLAGS and EIP, are called status registers.
These registers can also be accessed as single 16-bit or 32-bit registers.

Thefirstfourscg771c7zfrcg!.sfcrsarethesameasinanyofthe8086family
of processors. The CS, DS, ES, and the SS registers hold current segment
values, or selector values when running in protected mode. Selectors will
bediscussedlaterinthischapter,butfornowjustthinkofthemasaspecial
form of a segment value. Two new segment registers were introduced by
the 80386. The FS and the GS are additional registers added to hold extra
selectors. All of the segment registers are 16-bit. Hidden from view is a
descriptor cache associated with each of the segment registers. When
operating in protected mode, this cache holds additional information
aboutthememorythesegmentregisterpointsto,butthesearenotdirectly
accessible to the programmer and they will not be discussed here.

The profccfz.o7i rcgz.sfcrs are designed to support the protection feature
ofthe80386family.Thesefourregisters,GDTR,IDTR,LDTR,andTR,were
introducedbythe80386famfly,andholdinformationspecifictothe80386
protected mode operation.

The co7t£7'oJ rcgz.sfcrs manage the paging and numeric processor mech-
anism,andonthe80486processors,controlthecacheoperatious.TheCRO,
CR1,CR2,andCR3are32-bitregisters,eachbitrepresentingaspecificstate
within the microprocessor.

The dcz7t/g and fcsf rcgr.sfcrs are not generally used by application
programmers and will not be discussed in detail in this book. These

OS/2:Anoverview 9
Chapter 1

registers would be used by emulators and real-time embedded applica-
tions of the 80386 family of microprocessors.

Figure 1-1 shows the layout of the 80386 registers.

SEGMENTED AND VIRTUAL MEMORY MODELS
The entire Intel CPU line is based on the original 8086, which views

the memory of the system as if it were organized into 64K chunks called
scg77zc7tfs.Thisisalsohowthe80386viewsmemorywhenoperatinginreal
mode. However, we are going to be concentrating on the 80386 protected
mode of operation. This is the mode OS/2 2.0 runs in, and the mode all
programs written for OS/2 2.0 will use. While operating in protected
mode, the 80386 has basically two modes of operation: scg77tc71£ed and
z7z.r£#¢J (flat) mode. The first mode uses the segment registers to hold a
"pointer" into a table of addresses. This "pointer" is what is knov\m. as a

scJccfo7`. Although this is similar to how the 8086 family of processors
operate, the way in which the actual linear address is calculated is quite
different. Loosely speaking, the contents of a segment register is used to
look up a base address, and this value is then combined with that of
anotherregister(orimmediatevalue).Thissecondvalueiscalledtheo#sc£.
Segmentsoroffsetsonthe80386canbeaslargeastheentireaddressspace,
4 gigabytes.

Like most things in life, the segment/offset memory model has its
good and bad points. In the plus column, the segmented scheme makes it
easy to write relocatable code. It also makes it easier to develop virtual
memory techniques. In the minus column, the segmented approach tends
to compHcate what is essentially a nearly intuitive concept: memory. Most
programmers think of memory as strictly linear. That is the most natural
view.However,thesegmentationmodelrequiresthatwethinkofmemory
abstractly, as disjointed pieces-a somewhat unnatural concept. The de-
bate over the segmentation memory model has raged for years and will
probably continue to rage.

The second mode of operation, the flat model, is the one OS/2 uses,
and it is the model most programs developed for OS/2 2.0 will use. The
flat model simply means that the address space is linear. The segment
address is always set to zero, and the offset contains the entire 32-bit
address.Thisisoftenreferredtoasthe0..32modeofaddressing.Programs
execute very quickly in this mode, because the segment registers can be
loaded once, and thereafter only the offset values need to be loaded in
order to access memory, saving the time it takes to repeatedly load a

10 0S/22.0 programming
_ _ _____

Chapter 1

Bit 31 Bit 15 Bit 7 Bito

General Purpose
IEAX IAX

EBX BX

ECX CX

EDX DX

EBP BP

ESI Sl

EDl Dl

ESP SP

EIP IP

EFLAGS flags

Bit 15 Bito

Segment

Bit 15 Bito

GDTR
lDTR

LDTR
TR

Control

FIGURE 1-1

CFIO

CR1
CR2
CR3

The 80386 CPU Registers

OS/2:Anoverview 11
Chapter 1

segment register. All of this information on how the memory is organized
and accessed is interesting, but actuauy, because OS/2 does the work for
you, you do not need to worry too much about where your programs
execute in memory or how that memory is organized.

REAL VERSES PROTECTED MODE
Asyoumightalreadyknow,inordertomaintainsoftwarecompatibil-

ity with its ancestors, the 80386 has to be able to execute 8086 programs.
To provide for this, the 80386 CPU can operate in either rc¢J or profccfcd
mode. These modes of operation are so different in some respects that it
may be easier to think of the 80386 as two CPUs in one package. Fortu-
nately, with release 2.0 of OS/2, the processor can be switched into pro-
tectedmodeshortlyafterstartup,andthereafterremaininprotectedmode.
Earlier versions of OS/2 required switching into real mode when running
DOSprograms.Asyouwiuseelaterinthischapter,OS/22.0canrunDOS
programs in protected mode by using the virtual real mode of the 80386
processor.

Whenthe80386isrunninginprotectedmode,severalnewinstructions
become available, and the way the system memory and resources are
accessed changes. Perhaps the most significant differences are the way
physical memory is protected and the way addresses are calculated. The
80386 can directly access up to 4 gigabytes of system RAM. In protected
mode, programs are assigned a privilege level. Chly the most privileged
programs have access to certain instructions, such as interrupt and I/0
instructions. Also, in protected mode it is possible for the CPU to prevent
one program from accidentany interfering with another that is concur-
rently executing. h fact, it is this feature which gave protected mode its
name. Finally, protected mode operation auows the 80386 to use some
special instructions that make multitasking easier to implement.

PHOTECTED MODE ADDRESS CALCULATION
To access 4 gigabytes of RAM requires at least a 32-bit address. This is

one of the reasons why the registers on the 80386 have been increased in
size to 32 bits. The location of any byte in memory is known as the o#sc£.
In the segmented model, the segment is used to determine which section
of memory the offset refers to; but in the flat memory model, the offset
is the complete address, and the segment register no longer holds a
useful value. Actually, the segment register is still used to calculate the

12 0S/22.0 programming
Chapter 1

address, but the physical address is obtained through the use of the
memory paging unit.

The flat model employs what is known as a z7z.rf#¢J 77tc77tony sysfc777. The
addressstoredintheregisterisavirtualaddressorganizedintoequalsized
chunks of memory known as p¢gcs. The physical address of a virtual page
is set at load time and is not relocatable thereafter. Because the memory is
set up in pages, these pages can be swapped in and out of memory as the
operating system sees fit.

When the 80386 calculates an address in protected mode (whether in
the flat or the segmented model), it uses the value of a segment register as
an index into a descriptor table. It then adds the base segment address to
the offset to calculate the complete address. As the address is being
calculated, the various access information is being checked. If your pro-
gram attempts to reference memory that it shouldn't, a general protection
fault will be generated. When the paging unit is enabled for the flat
memory scheme, additional checking is done by the memory paging unit
when the virtual address is converted into a physical address.

Thecpumaintainsthreetypesofdescriptortables:thegzob¢Jdcscrz.pfor
table (GDrF), the local descriptor table (LDrF) , a;nd the interrupt descriptor table
(IDT). Loosely speaking, the GDT holds address information that is avail-
able to all tasks in the system. The LDT holds address information that is
local to each task. The IDT holds address information related to the
interrupt service routines. As stated, these tables are maintained automat-
ically by OS/2 for you, so that in general you will not need to worry about
them while programming. However, understanding them is important in
order to get a clear grasp of how OS/2 handles multiple tasks.

THE ADVANTAGES OF PROTECTED MODE ADDPESSING
Aside from the fact that a larger amount of memory can be accessed

in protected mode operation, the use of descriptor tables and the memory
paging unit change the meaning of the address registers and have several
positive effects, which OS/2 exploits to provide a stable and efficient
multitaskingenvironment.First,becausetheregisterholdsanindexrather
thananaddress,theoperatingsystemisabletomovesegmentsinmemory
at will by changing the base segment address in the descriptor table entry.
When the memory paging unit is enabled, the pages are freely swapped
in and out as the operating system se.rvices the many tasks running on the
system. All of this is accomplished in a way that is completely transparent
to the application program, because the program does not "know" what

OS/2:Anoverview 13
Chapter 1

part of memory it is using, or which pages are currently in physical
memory.Thus,evenwhiletheprogramisexecuting,itcanbemovedabout
inmemory.Thisfeatureisimportant,becauseitallowstaskstobeswapped
in and out of memory. It is possible for OS/2 to overcommit memory by
moving tasks in and out of RAM, storing them temporarily on disk. This
means that you can run programs that require more RAM than is in the
system, or to run more programs simultaneously than would normally fit
in the system RAM.

The fact that various access rights, iricluding privilege levels, are now
linked with a memory location allows OS/2 to control access both to itself
and to other system resources. Essentially, for code to access memory, it
must have equal or higher memory access privileges.

I/0 PRIVILEGES
Another feature of the 80386 is its I/0 protection. Because the pro-

tected mode operation of the 80386 was designed for a multitasking
environment, it had to have some way of controlling access to certain
instructions,includinginputandoutputiustructious.Withoutthiscontrol,
several different applications could-and probably would-write to the
same devices at the same time, resulting in chaos. Control is achieved via
a program's I/O prz.z7#cgc JczJCJ (IOPL for short) . Although the details are not
important as they relate to this book, the basic IOPL concept works like
this: the only routines that have access to IN and OUT instructions-and
to the various interrupt instructions-are those routines that have been
granted I/0 access.

OS/2 AND THE TWO 80386 0PEPATIONAL MODES
As has been stated frequently in the foregoing discussion, the 80386

mode of operation designed for a multitasking environment is the pro-
tected mode. Hence, OS/2 uses this mode and requires all programs that
execute under its control to do likewise.

Although OS/2 is a protected mode operating system, the OS/2
designers needed to provide what is sometimes referred to as a co777p¢£z.bz7-
I.£y p¢£fe from the older DOS to OS/2. To this end, a DOS emulator needed
to be created that ran under the control of OS/2. However, as you know,
DOS is a real mode operating system, and real mode and protected mode
are mutually exclusive: they can't both be active at the same time. Here is
the solution the OS/2 developers chose: when rurming a DOS program,
use the virtual 86 mode of the 80386 processors. The virtual 86 mode of the

14 0S/22.Oprogramming
Chapter 1

80386 processor allows the operating system to run one or more real mode
programs without actually switching to real mode. With this scheme, all
of the memory protection of the protected mode can be utilized.

The big problem is that real mode programs like to take full control of
the system, bypassing any operating system that is present in the system.
As you will soon see, OS/2 must control all system devices if it is to keep
multiple tasks from trying to use the same device at the same time. This
control is achieved largely through the use of the protected mode's privi-
lege and I/0 protecfron levels, which do not exist in real mode. Although
OS/2 can prevent some types of device-request collisions, it cannot stop
them all. Some real mode programs will simply not run at all under the
OS/2 DOS emulator. Programs which must take over the hardware may
have problems running, based on how they were designed. OS/2 seems
capable of rurming most DOS programs, but stay away from programs
that directly manipulate the disk or file systems.

OS/2 ESSENTIALS

From a programming perspective, multitasking capabilities are the
most important attribute of OS/2. Virtually all the differences between
DOS and OS/2 are due, either directly or indirectly, to OS/2's support of
multitasking. Because it is such an important topic, 1et's begin with it.

THREADS, PROCESSES, AND TASKS
The OS/2 design team did multitasking right! OS/2's tasking model

is based upon the simultaneous execution of pieces of code, rather than on
the simultaneous execution of programs. In OS/2 terminology, the sman-
est unit of execution is called a ffere¢d. All programs consist of at least one
thread, but they may contain several. Hence, it is possible for a single
program to have two or more parts of itself executing at the same time.
This means that not only can OS/2 execute two or more programs at
the same time, but it can also execute two or more parts of a single
program concurrently.

OS/2:Anoverview 15
Chapter 1

In OS/2 terminology a process and a £¢sk are the same, and they are
very loosely synonymous to progr¢777. A process owns various resources,
including such things as memory, files, and threads.

THE OS/2 MULTITASKING MODEL
AsOS/2iscurrentlyimplemented,itisdesignedtoshareasingleCPU

between several threads. It does this by granting each thread a short
amount of CPU time called a fz.777c sZz.cc. Although, technically speaking,
only one thread is actually executing at any single point in time, the time
slicing is so rapid that the threads in the system appear to be running at
the same time.

Multitasking is controlled in OS/2 through the use of a preemptive,
priority-based scheduler. OS/2 associates a priority with each thread.
Higherprioritythreadsaregrantedaccesstothecpubeforelowerpriority
ones. There are four main priority categories. In order of highest to lowest,
they are

> Time-critical

> Foreground
> Regular
> Idle

Time-critical tasks are those that must respond immediately to some
event, such as communication programs. Within the time-critical category
there are 32 priority levels.

The foreground and regular priorities are really two flavors of regular
tasks. When a program is on the screen, OS/2 gives its threads a fore-
ground priority, which is the highest priority that regular tasks can have.
This is done to insure that interactive sessions always take place without
jerky or sluggish responses. Other regular threads in the system will be
given background priority when they are not displayed on the screen.
Within this level there are 32 priority levels. OS/2 dynamically changes
the priority of non-foreground threads at this level to provide for the most
efficient use of the CPU.

Finally, the lowest priority tasks are given idle priority. This level
executesonlywhentherearenohigherprioritytaskscapableofexecuting.
Within this group, 32 priority levels are available.

16 0S/22.Oprogramming
Chapter 1

OS/2 always runs the highest priority thread capable of executing.
When two or more threads share the same priority level, they are granted
CPUtimeslicesinaround-robin fashion.Atfirstyoumaythinkthatahigh
priority thread would dominate the CPU, but this is not the case, because
most programs, even time-critical ones, spend much of their time waiting
for an event to occur. When a thread is waiting, OS/2 stops executing it
and runs another. Also, OS/2 has certain parameters that determine the
longest amount of time a process can be suspended, which help eliminate
this sort of problem.

A thread inside a process is in one of three mutuauy exclusive states:
Z7Jockcd, rc¢dy-fo-r#77, or r#7i7it.77g. Any time a thread is waiting for some-
thing, its execution is said to be blocked. For example, a thread that is part
of an interactive program may be waiting for keyboard input. Until that
input is received, the thread can execute no further, which causes the
execution of that thread to become blocked. Blocked threads are not given
CPU time until the event they are waiting for occurs. Cince this happens,
the thread is in a ready-to-run state, but it is still not executing. It only
resumes execution when OS/2's scheduler grants it a slice of CPU time. If
the unblocked thread is of higher priority than the thread(s) currently
being executed, then the currently executing thread(s) is preempted and
the unblocked thread is allowed to run. Otherwise, it must wait until all
higher priority tasks are blocked.

Thesinglemostadvantageousattributeofathread-basedmultitasking
system is that it allows greater throughput by permitting independent
pieces of your program to execute concurrently. For example, a word
processing program could be simultaneously formatting text for output
and taking input from the user.

INTEPPROCESS COMMUNICATION
OS/2 supports several forms of interprocess communication (IPC).

These include pipes, queues, semaphores, and signals. Many devices are
sequential in nature. That is, they cannot be used by two or more threads
at the same time. Whenever two or more threads need to use one of these
devices, they must coordinate their activity. The part of a program that
accesses such a device is called a crz.££.c¢Z sccfz.o7i. Before entering a critical
section, a thread must make sure that the device accessed by that section

OS/2:Anoverview 17
Chapter 1

is not already in use by another thread. This is accomphished using IPC,
and the process is referred to as sy#chro7tz.zfl£!.o7t. You will see several
examples of this in Chapter 10.

OS/2'S PROTECTION STRATEGY
As was mentioned during the discussion of the 80386, for a multitask-

ing operating system to be successful, it must prevent programs running
underitfromadverselyaffectingeachotherortheoperatingsystemitself.
In essence, the operating system must protect programs and itself from
harm.OS/2achievesthisprotectionbyutiHzingthe80386'sprivflegelevel
mechanism and protected mode addressing scheme.

As you may recau, the 80386 supports four privilege levels, numbered
0 through 3. Level 0 is the most trusted, and level 3 is the least trusted. In
OS/2, the core routines, usually called the ker7zcJ, are at level 0. Level 1 is
unused by OS/2 at this time. Application programs run at levels 2 and 3.
The only way to access routines at a more trusted level is through a c¢JJ
g¢£c. This is the method used by OS/2 to auow your programs access to
the various OS/2 services. Using this scheme, OS/2 is able to prevent a
program from accessing any part of OS/2 in an uncontrolled manner.

If a program attempts to access memory outside its currently defined
limits, a general protection fault is generated. OS/2 intercepts this fault
and terminates the process that caused it. h this way one program cannot
destroy another's code or data areas. (Keep in mind that it is possible for
twoormoreprogramstosharememorywhenitisdesirablethattheydoso.)

Because OS/2 controls the page and descriptor tables, it can mark
certain areas as read-only, which means that programs can read the data
in that area but not change it.

Finauy,OS/2hascontrolofalll/Odevices.Thismeausthat,ingeneral,
an application program carmot execute an IN or OUT instruction or turn
interruptsonoroff.(hamultitaskingoperatingsystemalll/Oisinterrupt
driven; hence a program cannot be allowed to alter the state of the
interrupts.)Bydenyingtheuseofl/Oinstructions,OS/2isabletoprevent
two or more programs from accessing the same device at the same time.
(It is possible for OS/2 to grant a program the abiHty to perform I/0 in
some special situations. This feature will be discussed later in this book.)

18 0S/22.0 programming
Chapter 1

VIRTUAL MEMORY
OS/2 takes advantage of the 80386's virtual memory capabilities.

OS/2 is able to overcommit the memory of the system by swapping
unused pages to disk until they are needed. Although excess swapping
can slow a multitasking system to a crawl, a small amount of swapping is
hardly noticeable. This is because most programs contain code that is
seldom executed. When a request for memory is made and none is avail-
able, OS/2 examines each page and swaps to disk the one least recently
used. Should this page be needed, a memory fault is generated and OS/2
swaps the page back in, perhaps swapping a different page out in the
process. What is particularly nice about OS/2's virtual memory capabih-
ties is that they are performed automaticauy and do not require any
additional effort on your part.

THE APPLICATION PROGRAM INTERFACE

Aprogramaccessesos/2'ssystemservicesviatheAppZz.co£{.o7iprogr¢77c
J77£cr/#ce (API). OS/2 does not use a software interrupt scheme to utilize a
system service. Instead, the API is a c¢JJ-Z7flscd z.71£cr/#cc. In this approach,
each OS/2 service has a name associated with it, and this name is used to
call it. To use this method, the necessary parameters (if any) are pushed
onto the stack and the appropriate OS/2 function is called. Most OS/2
functions return 0 (in the EAX register) if successful.

If you are programming in a high-level language, such as C, then the
work of putting the parameters to a call on the stack is done for you by the
compiler. However, if you are programming in assembler, then your
programs must do this explicitly. For example, the OS/2 function
Dossleep() is used to suspend the execution of the thread that calls it for
a specified number of milliseconds. Shown in pseudoassembly, this is
how Dossleep() is caued so that the calling thread suspends for 100
milhseconds:

PUSH 100
CALL Dossleep

OS/2:Anoverview 19
Chapter 1

We will look more closely at how the API functions are called in the
next chapter.

DYNAMIC LINKING

The API is implemented in OS/2 using a procedure called dy7i¢777z.c
Jz.71kz.77g. Here is how it works. All the functions in the API are stored in a
relocatable format called a dy77#77zz.c Jz.77k Jz.br¢ny (DLL). When your program
calls an API function, the linker does 7iof add the function's code into the
executable version of your program. Instead, it adds loading instructions
for that function, such as what DLL it resides in. When your program is
executed, the necessary API routines are also loaded by the OS/2 loader.
(Itisalsopossibletoloadroutinesaftertheprogramhasstartedexecution.)
A dynamic link routine is called a dy7tJz.7ik.

Dynlinks have some very important benefits. First, because virtually
an programs designed for use with OS/2 will use OS/2 functions, the use
of dynlinks prevents disk space from being wasted by the significant
amount of duplicated object code that would be created if the OS/2
function code was actually added to each program's executable file. Sec-
ond, updates and enhancements to OS/2 can be accomplished by chang-
ing the dynlink libraries. Thus existing programs will automatically make
use of the improved or expanded functions. Finally, it is possible for you
to create your own dynlink libraries and let your programs profit from the
advantages of dynamic linking.

THE PRESENTATION MANAGEP

Although not included in OS/2 before version 1.1, the Presentation
Manager is a standard part of OS/2. The Presentation Manager is a
top-level graphical interface. Applications which use the Presentation

20 0S/22.Oprogramming
Chapter 1

Manager run under the OS/2 Workplace Shell. The Workplace Shell sup-
ports such things as multiple, overlapping windows, character fonts,
menus, and the mouse. The Presentation Manager is covered in significant
detail in section two of this book.

THE OS/2 PHILOSOPHY

Embodied in the functional aspects of OS/2 is the OS/2 philosophy,
which is essentially this: OS/2 should provide a stable multitasking envi-
ronment that is both flexible and extensible. As you have seen, the 80386
family of microprocessors supply the raw materials to support a stable
multitasking environment in which one program cannot destroy another.
Also, its protected mode addressing scheme allows OS/2 to support
dynamic linking, which allows easy modification to most of the code that
comprises OS/2. It also allows new OS/2 system services to be added,
either by IBM, or by a third party.

From the programmer's point of view, OS/2 is a giant toolkit. In
the rest of this book you will learn how to access those tools to create
OS/2 programs.

CHAPTER

FUNDAMENTALSOFOS/2

PPIOGPIAMMING

In this chapter we will exarfune in significant technical detail several
key points relating to the use of OS/2's API (Apphcation Program
Interface) services. Before you can begin to write programs that run
under OS/2, you need to understand exactly how to interface to the
API.Remember,theAplservicesareyourprogram'sgatewaytoos/2.

This chapter begins with a discussion of the OS/2 call-based
interface, and describes how to compile and link OS/2 programs.
Alongtheway,somesampleprogramsaredevelopedthatiuustrate
several important OS/2 inter facing concepts. The chapter treats in
some detail the different categories of API functions and how they
are accessed. It concludes with a discussion of some general OS/2
and 32-bit programming practices, including the use of function
prototypes, and it points out some mistakes commonly made by
programmers migrating from a 16-bit programming environment.

THE OS/2 CALL-BASED INTERFACE

Your program interacts with OS/2 by using the API functions,
which are kept in dynlink (dynamically linked) libraries. Dynlink
libraries are discussed in Chapter 12, but for now you can think of
themmuchasyoudothestaticallylinkedlibrariesyoualreadyhave

22 0S/22.0 programming
Chapter 2

used in other operating systems, such as DOS. The big difference is that
the library functions are not actuauy loaded into memory until they are
needed. In Chapter 1 it was mentioned that OS/2 API functions are
accessed via a CALL instruction, and a very general explanation of the
procedure was given. Here, you will leam in detail the procedures used to
call the API routines.

THE CALL FOPIMAT
Routines in the API (or in any dynhnk library, for that matter) must be

reached by issuing a CALL instruction. Prior to issuing the CALL instruc-
tion,however,yourprogrammustpushontothestack,intheproperorder,
the parameters used by the API service that you will be calling. In a
high-level language like C, the compiler does the job of pushing the
parameters onto the stack. The OS/2 API interface supports four basic
types of parameters:

> byte (8bits)

> word (16bits)

> double word (32bits)

> pointer (32 bits)

Beforediscussingthesefurther,let'stakeashortdetourandreviewthe
difference between call-by-reference and call-by-value parameter passing
conventions.

Calllbylvalue
There are essentially two ways in which a subroutine may be passed

its parameters. The first is c¢JJ-dy-zMJt# Using this method, the subroutine
is passed copies of the actual information (values) that it needs. Any
modifications the subroutine makes to a parameter 's value will not affect
the calling routine's copy of the parameter. The subroutine is always
operating on a copy of the original value, and therefore it cannot modify
the original value.

Calllby-Reference
The second way parameters can be passed to a subroutine is c¢JJ-ky-

rc/crc#cc. In this approach, the calling routine passes the address of, or in

Fundamentals of os/2 Programming 23
Chapter 2

C terms, a pointer to the parameter of the subroutine. When this method is
used, the subroutine indirectly accesses and manipulates the original data
foundinthecallingroutine.Changestotheparameteraffectthecaller'scopy,
because the subroutine is actually operating on the caller 's data.

The OS/2 API services require the use of both can-by-value and
call-by-reference. If the API service does not need to return information to
the caller via the parameters, then call-by-value is used; otherwise, the
parameters will need to be passed by reference. Finally, any complex data
or variable length data structures must be passed by reference. Several of
theAPIservicesoperateonconglomeratedatatypesthataretheequivalent
of a C structure. OS/2 does not pass these on the stack. Instead, only a
pointer is passed.

Many API services require a parameter type caued an ASCJJZ string,
which is simply a zero terminated string. When a string of this sort is
required, its address is passed-not the entire string.

ERROR RETURN
As stated in the preceding section, the OS/2 API functions return

information to the calling routine through can-by-reference parameters.
However, all of the API services return a success/error code in the FAX
register. When an API service is called from a C program, the value
retumedintheEAXregisterautomaticallybecomestheretumvalueofthe
API routine. In general, all the functions return 0 when successful. A
non-zero return inplies an error. Many of the examples presented in this
book do not check for errors, but this is because these are small sample
programs, not because error checking shouldn't be done. In actual pro-
gramming practice, it is strongly recommended that au API return values
be checked for an error condition.

A SAMPLE C PROGRAM

The C program that follows is an example using the DosBeep() API
function. To compile this program you must have a C compiler that runs
under OS/2. This book uses the IBM C compiler ICC. This book also uses
some of the tools found in the OS/2 2.0 Toolkit, also supplied by IBM.

24 0S/22.0 programming
Chapter 2

Assuming you name the sample program WHOOP.C, compile the pro-
gram using this command:

Ice WHOOP.C

This will cause the sample program to be compiled and linked, including
the necessary dynlink libraries.

In this simple program, the function DosBeep() is assumed to be
successful and its error return code is not examined:

/* C language demonstration program using DosBeep() */

#include <os2.h>
#include <stdio.h>

main ()
(

int i;

for(i=100,. i<2500; i+=50)
DosBeep(i,1); /* sound the speaker */

puts("Press ENTER to quit") ;
getchar(); /* read and discard the keypress */

)

As you will see, many of the API services will either always work or
willalwaysworkifyousupplycorrectinput.Forthisreason,theerrorcode
will often be ignored in the sample programs in the interest of conserving
time and space. However, as you will see in subsequent examples, certain
API services should always have their return codes examined. The API
function DosBeep() is found in a dynlink library. This book will explain
the concepts behind dynlink libraries, and it will show you how to create
your own dynlink libraries.

Asyouprobablynoticed,theAplserviceDosBeep()isshowninmixed
case in the C program. In the C environment, the API services are called
using their mixed case version, such as DosBeep(). A110S/2 functions use
this naming convention, and you will soon get used to it. This is how the
functions appear in the header file, and this is how the prototypes are

Fundamentals of os/2 Programming 25
Chapter 2

accessed. In actuality, all API functions are known to the system in upper
case only. When you are accessing the API functions from assembly
language programs, the API functions need to appear in upper case.

Also notice that C's standard functions,like puts() and getchar(), can
be used in OS/2 programs. These functions in turn access the necessary
API services.

Keep in mind that in many cases, functionally similar C programs can
be written using C's standard library functions, rather than calling the API
directly. This win be the case with many of the API services. In something as
simple as the preceding program, using puts() in preference to an API call
that writes to the screen is probably a good idea, because of ease of use. API
services often overlap parallel standard library functions. However, there is
an important reason why you might want to access an API service directly,
even if a similar C standard library function exists: efficiency.

As part of the quest for greater performance, high-performance soft-
ware designed for DOS traditionally bypassed the C standard library
functions as well as DOS itself. A similar situation will exist for OS/2
programs. You will find that in several areas you will want to bypass C's
standard library functions in favor of calling the API routines directly, in
order to achieve faster runtime execution.

Understand that when you call a standard C function that is paralleled
by OS/2, your can to the standard function is generally passed along to
the corresponding API service. This means that instead of generating one
call, you generate two calls (one to the standard function and one to the
API). However, when you call the API directly, only the one call to the API
service routine is generated. As you probably know, each time you can a
routine, time is consumed. For the fastest possible programs, you should
call the API directly. Keep in mind, however, that if several sections of your
programs are not time-critical, it makes more sense to call the standard
functions, because they are more portable between operating systems and
are occasionally easier to use.

All the examples in this book are in C, because programs in C provide
a better means of presenting and illustrating the API services than do
assembly programs. Also, most programmers will use C to develop OS/2
applications, so it makes sense to show examples in the language that will
be used more frequently.

26 0S/22.Oprogramming
Chapter 2

USING STANDARD HEADER FILES

The header file OS2.H must be included with every C program or
modulethatusesanyoftheos/2constructs,definitions,orfunctious.This
file causes the information required to use the API services to be added to
your program.

Because there are a large number of API services, the header files that
contain their definitions are quite large, and it can take the compiler quite
a long time to read and process them. For this reason, OS/2 has organized
the header files into logical groups. By default, the compiler does not
include all parts of the header files. Instead, a series of #ifdef statements
priortoincludingOS2.Hareusedtoconditionallyincludeorexcludelarge
parts of the API service declarations. Many of the common symbols used
in the ffifdef statement are listed in Table 2-1.

Except for a few of the symbols in Table 2-1 (listed at the beginning)
that cause large sections of the OS/2 system declaration to be included,
defining one of these symbols causes a specific (and smaller) subsection of
the OS/2 header file declarations and defines to be included. You will see
some of these defines being used in this book as sample programs are
developed. The API function descriptions in the OS/2 2.0 technical refer-
ence library show exactly which of these defines to use for each of the API
functions.

The reason that one of these defines was not needed before including
OS2.H in the sample C program is that some services, including
DosBeep(), are always included automatically. More information on these
defines will follow in the chapters which discuss the use of the different
API functions.

C AND THE API PARAMETERS

OS/2 defines and refers to data types in a way that is a little different
from standard C. The standard types are renamed or redefined through
the use of macro replacements or type define statements. IBM has also
adopted a standard naming convention for both variables and functions,
which may look strange to the first time OS/2 programmer. With a little

Fundamentals of os/2 Programming 27
________ '

Chapter 2

Symbol

INCL PM
INCL WIN
INCL BASE

INCL GPI
INCL DOS
INCL DOSERRORS

INCL DOSSEMAPHORES
INCL DOSMEMMANAGER
INCL DOSDOSPROCESS
INCL DOSDOSNMPIPES
INCL DOSFILEMGR
INCL_DOSQUEUES
INCL DOSMODULEMGR
INCL DOSDATETME
INCL DOSEXCPTIONS
INCL DOSNLS
INCL DOSASYNCTMER
INCL WINVINDOWMGR
INCL WINMESSAGEMGR
INCL WINHVI?UT

INCL WINDIALOGS
INCL WINSTATICS
INCL WINBUTTONS
INCL WINENTRYFIELDS
INCL WINMLE
INCL WINLISTBOXES

TABLE 2-1

Subsystem Accessed

Include all the PM subsystems.
Include all window subsystems.
Include all the base API subsystems.
Include all of the graphics subsystems.
Include all the kernel subsystems.
Define all the OS/2 errors.
Access the semaphore subsystem.
Include the memory manager subsystem.
Thread and process manipulation.
Include declarations to use pipes.
Include the file I/0 declarations.
Include declarations to use queues.
Module level resource access.

Include date and time declarations.
Exception handling services.
National language support services.
Include declarations for timer services.
Window management services.
Message management services.
Mouse and keyboard services.
Dialog box declarations.

Static control declarations.
Button control declarations.
Entry field declarations.
Multiple line entry fields.
List box control declarations.

Conditional Include Syndols

28 0S/22.Oprogramming
Chapter 2

Symbol

INCL WINMENUS
INCL WINSTDDLGS
INCL WINSTDBOOK
INCL WINSTDCNR
INCL WINSTDSLIDER
INCL WINSTDSPIN
INCL WINSTDVALSET
INCL WINSCROLLBARS
INCL WINFRAMEMGR
INCL WINFRAMECTLS
INCL WINRECTANGLES
INCL WINSYS
INCL WINTIMER

TABLE 2-1

Subsystem Accessed

Menu control declarations.
Include all PM dialog and controls.
Notebook control declarations.
Container control declarations.
Slider control declarations.

Spin button declarations.
Value set declarations.

Scroll bar declarations.
Frame manager declarations.
Frame control declarations.
Include the rectangle routines.
Include the system values.
Include the timer routines.

Conditional Include Syndols (ccmthned)

practice, some of these techniques will become natural to use and helpful
in documenting your programs.

DATATYPES
Many of the types presented in the following chapters will no doubt

look strange to you. These types are simply OS/2 names for the data types
you are quite used to using. OS/2 has defined these types in header files,
and this book will use these type definitions in all of the prototype
definitions, and in most of the examples presented. I suggest that you too
adopt this convention for your programs. Some of the new data types are
simple macro defines of the old ones; others are type defined to the new
type.

AfewofthemorecommonOS/2APItypesarelistedhereinTable2-2.

Fundamentals of os/2 Programming 29
__ _ __

Chapter 2

OS/2 API Standard c

CHAR char
SHORT short
INT int
LONG long
UCHAR unsigned char
BYTE unsigned char
UIP\IT unsigned int
USHORT unsigned short
ULONG unsigned long
PCHAR char *
PII\IT int *

PLONG long *
BOOL unsigned long
PSZ char *

HWND unsigned long
VOID void

TABLE 2-2

API Data Types

Asyouprobablynoticed,alloftheOS/2typesaresimplyfancynames
foroneofthestandardCtypes.Ingeneral,placingapreceding"P"onmost
oftheos/2typestumsthetypeintoapointertothetype.Asyouusethese
definitions, you will get quite comfortable with most of them. Other
seldomusedonesmayrequirereferencetoamanualorheaderfiletofigure
out what sort of value is stored in the type. I have found them to be useful
in that they are a little more self-documenting than the base type.

Although OS/2 has defined several new names for types, it is not
absolutely necessary to use these type declarations. Their native C base
types can be used in place of the OS/2 defined name. This will not cause
anytechnicalproblems,andprogramswritteninthiswaycanbecompiled

30 0S/22.0 programming
___ _ __ _ ____ _

Chapter 2

successfully by any OS/2 compatible C compiler. This allows programs
migrating from another operating system to work without the hassle of
converting all the variable declarations to the OS/2 style of type naming.

NAMING CONVENTIONS
If you are new to OS/2 programming, several of the variable and

function names used in this book and other OS/2 documentation will
probably seem rather unusual. The reason for this is that they all follow a
set of naming conventions. For functions, the name consists of a function
class, followed by a verb, which is usually followed by a noun. The initial
characters of the function class, the verb, and the noun are capitalized. The
main function class prefixes and descriptions are presented in Table 2-3.

For variable names, IBM uses a rather complex system of indicating
the type of data stored in the variable through the variable's name. To
accomplish this, a lower case prefix is added to the beginning of the
variable'sname.Thevariablenameproperbegiuswithacapitalletter.The
prefix indicates the data type stored by the variable or the purpose of the

TABLE 2-3

Class Description

Device functions
Direct manipulation functions
Dynamic data formatting
Graphics functions
Profile functions
Spooler functions
Window functions
Control program functions

Function Class by Prefix

Fundamentals of os/2 Programming 31
Chapter 2

variable, which is not necessarily the same as the declared type of the
variable. Some of the more common prefixes are shown in Table 2-4.

Prefixes can also be user or system defined types. This can make using
and understanding prefixes more confusing. Frankly, the use of type
prefixes is controversial and is not universally supported. Many OS/2
programmers use this method; many do not. This book, for the most part,
win not use this method of naming variables. However, you are free to use
any naming convention you like.

Prefix Purpose or Type

b A byte value
c A count or size
clr A variable that holds a color
f Bitfield (flags) variable

h A handle
hwnd A window handle
id An identity
1 Long integer

msg A message

p Pointer (may be added to any type)
rc Return value
s Short integer
us Unsigned short integer
ul Unsigned long integer
sz A null terminated string

psz Pointer to null terminated string

TABLE 214

Variable Pref ix Characters

32 0S/22.Oprogramming
Chapter 2

THE API SERVICES

The API services can be separated into two broad categories: the
Presentation Manager services and the basic OS/2 kernel. The Presenta-
tion Manager category includes the windowing and graphics portion of
the API, and includes services to access the mouse, keyboard, and other
I /0 devices. The basic kernel contains the services that manage multitask-
ing capabilities, inter-process communication, and file I/0.

THE MAJOR API CATEGORIES
The second part of this book covers Presentation Manager API ser-

vices. The third part covers the non-Presentation Manager services. These
non-PresentationManagerAplservicescomprisethecoreos/2functious.
YoucarmotwriteprogramsthateffectivelyusethepowerofOS/2without
them. Although the two types of services are presented separately, all of
the core API services can and should be used when you are developing
code for the Presentation Manager.

There are four basic types of apphcations that can run in the OS/2
environment:

> OS/2 windowable
> DOs windows
> OS/2 full-screen

> Presentation Manager

OS/2 windowable applications do not use the Presentation Manager
mouse or keyboard services, and they do not create a message queue,
although a windowable application can be run in a Presentation Manager
window. The fun-screen application is similar, but runs in full-screen
mode.TheDOSWindowsapplicationcanruninfullscreenorinawindow,
butrurrsinthevirtual8086modediscussedinChapter1.Themostexciting
type of application, and the one that most OS/2 applications win belong
to, is the Presentation Manager application.

The second part of this book will use Presentation Manager applica-
tious exclusively for sample programs, and the third part will use the
windowable type of application for sample programs.

Fundamentals of os/2 Programming 33
Chapter 2

CONVENTIONS USED BY THE API SERVICES

A large portion of the remainder of this book is devoted to the descrip-
tion of the API services. Because most of the examples in this book are in
C, the proper way to call an API service will be shown using C function
prototype notation. In fact, from a C program, the API services actually
resemble any other C library function. The proper way to call an API
function can be illustrated by the following C prototype declaration:

APIRET APIENTRY DosBeep()(ULONG/eq, ULONG d%r);

This is, of course, the prototype for the DosBeep() API function used in
the previous sample program. All such prototypes are followed by a
description of the function's parameters. APHNTRY is defined as _System,
and APIRET is simply a ULONG (unsigned long) return value. These
declarations will be found on all API function prototypes, and they simply
declare the return and linkage types.

As you will see in the examples that appear in subsequent chapters,
some of the API services must be passed the address of a data structure.
While the name of the structure and the names of the fields that comprise
the structure are not important to OS/2 (it has no knowledge of them),
they are very important to the C programmer. Because each C compiler
that runs under OS/2 must declare the API services and define any
structures required by them, it must assign names to both the structures
andthefields.Thetroubleisthatthereisnoreasonwhytwodifferentcompiler
manufacturers have to use the same names when describing the same struc-
tunes. (Remember, the API services never "see" the names, only the data.) The
question, as far as this book is concerned, is which compiler's naming
conventions to foHow. This book is written from the point of view of the IBM
C compiler. By default, references to structure names and fields win fouow
the IBM narfung conventions, as described earlier in this chapter.

USING C PPOTOTYPES
InC,afunctionretumingavalueotherthanintmustbedeclaredprior

to its use, so that the compiler can generate the proper return codes. In
ANSI standard C, you can take this idea one step further by also declaring
the number and types of the function's arguments. This expanded defini-

34 0S/22.Oprogramming
Chapter 2

tion is called a¢7"£z.o77 profoftypc. Function prototypes are not part of the
original UNIX C, but were added by the ANSI standardization committee
andareusedbytheIBMOS/2compiler.TheyenableCtoprovidestronger
typechecking,somewhatsimilartothatprovidedbylanguageslikepascal.
Function prototypes also provide a convenient means of documenting the
calling syntax of a function.

The IBM OS/2 compiler issues errors if functions are called with
arguments that cause illegal type conversions or with a different number
of arguments. This error checking can only be accomplished if prototypes
are used. Although C is designed to be very forgiving, some type conver-
sions are simply not allowed. For example, it is an error to attempt to
convert a pointer into a float. Function prototypes will catch, and thus
prevent, this sort of error.

A user-defined function prototype takes the same general form as the
API prototypes,

type£\mchor_r\aLrne(arg_typel,arg_type2,...,arg_typeN).,

where fypc is the type of value returned by the function, and erg_ftypc is the
type associated with each argument.

As an example, the following program will cause an error message to
be issued, because there is an attempt to call func() with a pointer instead
of the float required.

/* This program uses function prototypes to enforce
strong type checking in the calls to func() .
The program will compile with errors because of
the mismatch between the type of the arguments
specified in the function's prototype and
the type of arguments used to call the function. */

float func(int, float); /* the prototype */

main ()
(

int x, *y;

x = 10; y = 10;
func(x, y); /* type mismatch */

)

float func(int x, float y)

Fundamentals of os/2 Programming 35
Chapter 2

(

float result;
result = (float)x/y;
printf("%f\n", result);

)

Notonlydoestheuseoffunctionprototypeshelpyoutrapbugsbefore
they occur, but it also helps verify that your program is working correctly
bynotallowingfunctionstobecalledwithmismatchedargumentsorwith
an incorrect number of arguments. It is even more important to use
prototypes in larger programs or in situations when several programmers
are working on the same project.

Cia a related subject, it has been possible in C to declare parameters to
a function in two different ways: the traditional (sometimes called cZ#ssz.c)
and modern methods. The traditional method is the only method allowed
by the earlier C compilers, while the modem form defined by the ANSI
standard is used by newer C compilers, including the OS/2 C compiler
from IBM. Actually, either method will work in the newer compilers, but
you carmot mix the two types of declarations when using the IBM OS/2
2.0 compiler.

In the modem approach, both the type and the name of the variable
are placed in the argument list, enclosed in parentheses, that follows the
function's name. That is, the form of the function parameter declaration is
similar to the form of the prototype declaration, except that the name of
the parameter must be included. This is the method used throughout this
book, and it is the recommended method.

In the traditional form, only the names of a function's parameters are
placed between the parentheses following the function's name. Then,
before the function's opening curly brace, the parameters are declared
using a syntax identical to a variable declaration. The following example
declares the previously used function func(), using the classic form of
parameter declarations:

float func(x, y)
int x;
f loat y,.
(

float result;
result = (float)x/y;
printf("%f\n", result);

)

36 0S/22.Oprogramming
Chapter 2

When porting older code to newer systems, the traditional form of
function definitions can be used without going through all the work of
convertingtothemodernform,butyouwillnotgetthebenefitsofthetype
checking that is performed when prototypes are used. In fact, the IBM
compiler for OS/2 2.0 does not allow mixing the classic style with proto-
types. If you have not already done so, I suggest taking the time to convert
to the modern form.

PROGRAMMING IN A 32-BIT ENVIRONMENT

If you are used to programming on the PC, then there are a few things
you should be aware of before starting to program in OS/2 2.0. First, there
are no far and near pointers. Memory is a flat linear address space. Second,
integers are now the same size as long integers: 32 bits. This was not the
casewhendevelopingprogramsunderDOsorapreviousversionofos/2.
Integers used to be the same size as shorts: 16 bits. This is a major cause of
problemswhenportingexistingcodefromanyotheroperatingsystemthat
has 16-bit integers.

DEFAULT DATA SIZES
The integer size for 32-bit programming environments, including

OS/22.0,is32bits.Thismayseemtooobvioustomention,butmanyhours
have been spent tracking down problems related to just this difference. If
you are developing new code, just keep aware of the new integer size. If
you are moving code from an older DOS or OS/2 operating system, you
win want to look out for some of the common coding problems associated
with the length of integers.

Most problems come from tricky, or simply poor, programming prac-
tices. Operations that assume the rollover or truncation of a value at the
16-bit limit of integers will be the biggest problem. Other problem areas
include assumptions about the number of bits in a structure or union that
contains integers.

One of the harder bugs to find related to the change in integer sizes is
when the parameters or return values of a function do not match between
the function call and function definition. A function that by default used
to return 16 bits, now returns 32 bits. The same problem occurs with

Fundamentals of os/2 Programming 37
Chapter 2

parameters: if a mismatch occurs in the middle of the parameter list, the
remaining parameters will act as if garbage was sent by the callee. For this
reason alone I recommend using prototypes for all user-defined functions.
Also insure that all the necessary header files are included by using the
appropriate #include statements in your programs.

A SHORT WORD ABOUT .DEF FILES

If you already know something about OS/2 programming, then you
may have heard about .DEF files. Essentially, a .DEF file is a text file that
contains information about a source code file that you will be assembling
or compiling. Its use with non-library code is optional, and no .DEF files
are needed to compile and run the sample programs just shown, nor will
.DEF files be necessary to compile most of the sample programs presented
in this book. Its main use is to allow dynamic link libraries to be created,
but you do not need a .DEF file to use an existing dynlink library. You will
learn more about .DEF files in the following chapters. The construction of
dynamic link libraries is discussed in Chapter 12.

Now that we have all this preliminary information out of the way, 1et's
move on to some real OS/2 Presentation Manager programming.

nPloGPIAMMINGTHE

PRESENTATloN MANAGER

Part Two of this book shows how to create Presentation Manager
applications. Although not technically required, virtually all signif-
icant OS/2 programs will be written for the Presentation Manager
interface. As you will see, writing a Presentation Manager applica-
tion is not as easy as writing a DOS program. However, program-
mingforthePresentationManagerisalsonotasdifficultasyoumay
have been lead to believe. In essence, to create a successful Presen-
tationManagerprogram,yousimplymustfouowawell-definedset
of rules. If you follow these rules, you will have no trouble devel-
oping programs for the Presentation Manager.

While this section contains all information necessary for you to
write the most common type of Presentation Manager application,
it does not discuss all aspects of Presentation Manager program-
ming. The Presentation Manager is simply too large a system. (In
fact, several large books are required to fully document the Presen-
tation Manager programming environment!) The purpose of this
section is to introduce the basics of the Presentation Manager and
providea"fasttrack"toPresentationManagerprogramming.If you
will be writing extensively for the Presentation Manager, you will

`,1,,,,,,:,,",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,:,;,,,,,I,,,,,,,,,,,,,,,,,,:,,",,",,,",,,,,,,,,,,,,":,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,I,,,,,,,,,,,,,,,;,`,,,,,,,,,,,,,,,,,,1,,,,,,:,:,,,,,,,,,,,,,,,,,,,,,,,,,:,,,,,,,,,;,,,:,,,,,,,,,",,,,,,,,,,,,,```;,,,,,,,,:,,,:,,,,,,,,,,,:,,;,,,,,,,",,,,,,,,,,;,,,,,,,,,,,,,,,,,,:,,,,,,,,",,,,,,,,,`,I:,,,,;,,,,,,,,,,,,,,:,,,",-;,,,,`,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,;,,,I,,,":,,,,,,,,,",,,,",,,,,,,,

aLbsofule+y r\eed the Presentation Manager Programming Reference (aL three-
volume set), which details the hundreds of Presentation Manager API
(Application Program Interface) functions. Because the Presentation Man-
ager is a very large and complex environment, you win want to have
available as much information as possible about how to use it.

CHAPTE

npESENThTION MANAGEp

PPOGPAMMING OVEPVIEW

R

This chapter introduces Presentation Manager programming. It has
two main purposes. First, it discusses in a general way what the
Presentation Manager is, how a program must interact with it, and
whatrulesmustbefouowedbyeveryPresentationManagerappHca-
tion. Second, it develops an application skeleton that will be used as a
basisforallotherPresentationManagerprograms.Asyouwi]lsee,all
PresentationManagerprogramsshareafewcommontraits.Itisthese
shared attributes that will be contained in the application skeleton.

WHAT IS THE PRESENTATION MANAGEH?

To an extent, what the Presentation Manager is depends upon
whetheryouareanenduseroraprogrammer.Fromtheuser'spoint
of view, the Presentation Manager is a window with which to
interact in order to run applications. From the programmer 's point
of view,thePresentationManagerisaspecificapplication-designed

42 0S/22.Oprogramming
___ __ ___

Chapter 3

philosophy.ItisacollectionofseveralhundredAPIfunctionsthatsupport
a graphics-oriented windowing system that runs under a multitasking
operating system. The Presentation Manager is one giant toolbox of inter-
related services which, when used correctly, allow the creation of applica-
tion programs that all share a common user interface.

ThegoalofapresentationManager-styleprogramistoenableaperson
who has basic familiarity with the OS/2 operating system to sit down and
run virtually any application without prior training. In theory, if you can
run one Presentation Manager program, you can run them all. Of course,
in actuality, most useful programs will still require some sort of training
in order to be used effectively, but at least this instruction can be restricted
to zt7fe¢f the program docs, not feow the user must z.7ifc7'¢cf with it. In fact,
much of the code in a Presentation Manager application is there just to
support the user interface.

At this point it is very important for you to understand that not every
program that runs under OS/2 will necessarily present the user with a
PresentationManager-styleinterface.Onlythoseprogramswrittentotake
advantageofthePresentationManagercommoninterfacedesignwill1ook
and feel like all other Presentation Manager programs. While you can
override the basic Presentation Manager design philosophy, you had
better have a good reason to do so; otherwise, the users of your programs
will, most likely, be very disturbed. Quite honestly, if you are writing
application programs that use the Presentation Manager, they should
conform to the accepted Presentation Manager programming philosophy.

As mentioned, a Presentation Manager program is graphics oriented,
which means that it provides a Graphical User Interface (GUI). While
graphics hardware and video modes are quite diverse, many of the differ-
ences are handled by the Presentation Manager. This means that, for the
most part, your program does not need to worry about what type of
graphics hardware or video mode is being used.

Let's look at a few of the more important features of the Presentation
Manager.

THE DESKTOP MODEL
With few exceptions, the point of a window-based user interface is to

provideonthescreentheequivalentofadesktop.Onadeskmaybefound
several different pieces of paper, one on top of another, often with frag-
ments of different pages visible beneath the top page. The equivalent of
the desktop in OS/2 is the window. The equivalents of pieces of paper are

Presentation Manager programming overview 43
Chapter 3

windows on the screen. On a desk you may move pieces of paper about,
maybe switching which piece of paper is on top or how much of another
is exposed to view. OS/2 allows the same type of operations on its
windows. By selecting a window you can make it current, which means
putting it on top of all other windows. You can enlarge or shrink a window,
or move it about on the screen. h short, OS/21ets you control the surface
of the screen the way you control the surface of your desk.

THE MOUSE
Unlike DOS, OS/2 allows the use of the mouse for almost all control,

selection, and drawing operations. Of course, to say that it ¢JZozus the use
of the mouse is an understatement. The fact is that the Presentation
Manager interface was dcsz.g77cd /or ffec 777o#sc-it ¢JJozus the use of the
keyboard! Although it is certainly possible for an application program to
ignore the mouse, it does so only in violation of a basic Presentation
Manager design principle.

ICONS AND GRAPHICS IMAGES
OS/2 allows (but does not require) the use of icons and bitmapped

graphics images. The theory behind the use of icons and graphics images
is found in the old adage: a picture is worth a thousand words.

An icon is a small symbol used to represent some function or program
that can be activated by moving the mouse to the icon and double-clicking
on it. A graphics image is generally used to simply convey information
quickly to the user.

MENUS AND DIALOG BOXES
Aside from standard windows, there are also special-purpose win-

dows. The most common of these are the menu and dialog boxes. Briefly,
a menu is, as you would expect, a special window that contains only a
menu from which the user makes a selection. However, instead of having
to provide the menu selection functions in your program, you simply
create a standard menu window using the Presentation Manager func-
tions.

Adialogboxisaspecialwindowthatallowsmorecomplexinteraction
with the application than that allowed by a menu. For example, your
application might use a dialog box to input a filename. With few excep-

44 0S/22.Oprogramming
Chapter 3

tious, non-menu input is accomplished by a Presentation Manager pro-
gram via a dialog box.

HOW PRESENTATION MANAGER AND YOUR PROGRAM INTERACT

When you write a program for many operating systems, it is your
program that initiates interaction with the operating system. For example,
in a DOS program, it is the program that requests such things as input and
output. Put differently, programs written in the "traditional way" call the
operating system. The operating system does not call your program.
However, in a large measure, OS/2 works in the opposite way. It is OS/2
that calls your program. The process works like this: a Presentation Man-
ager program waits until it is sent a 777css¢gc by OS/2. The message is
passed to your program through a special function that is called by OS/2.
Chce a message is received, your program is expected to take an appro-
priate action. While your program may call one or more Presentation
Manager API functions when responding to a message, it is still OS/2 that
initiates the activity. More than anything else, it is the message-based
interaction with OS/2 that dictates the general form of all Presentation
Manager programs.

There are many different types of messages that OS/2 may send your
program. For example, each time the mouse is clicked on a window
belonging to your program, a mouse-clicked message will be sent to your
program. Another type of message is sent each time a window belonging
to your program must be redrawn. Still another message is sent each time
the user presses a key when your program is the focus of input. Keep one
fact firmly in mind: as far as your program is concerned, messages arrive
randomly. This is why Presentation Manager programs resemble inter-
rupt-driven programs. You can't know what message will be next.

OS/2 ls MULTITASKING
As mentioned, OS/2 is a multitasking operating system. As a multi-

tasking operating system, it uses prcc"pfz.z7c 777t4Jf€.£¢skz.7ig. h this scheme,
the operating system simply stops executing one program and moves on
to the next in a round-robin fashion. This is not how all operating systems
work. Some systems, such as Microsoft Windows 3.1, use 7to7t-prcc77{p£€.zJc

Presentation Manager programming overview 45
Chapter 3

multitasking which requires the program itself to relinquish the CPU after
a given tine.

THE API
As stated, the Presentation Manager environment is accessed through

a call-based interface called the API (Application Program Interface). The
API functions provide all the system services performed by OS/2.

ThereisasubsystemtotheAplcalledtheGPI(Graphicsprogramming
Interface), which is the part of OS/2 that provides device-independent
graphics support. It is the GPI functions that make it possible for a
Presentation Manager application to run on a variety of different hard-
ware.

THE COMPONENTS OF A WINDOW
Before moving on to specific aspects of programming under the Pre-

sentation Manager, a few important terms need to be defined. Figure 3-1
shows a standard window with each of its elements pointed out.

Title bar Minimize button
''

Client area

Window
frame _

FIGURE 311

/
Horizontal scroll bar

Maxinrize
button

Elements Of a standard window

46 0S/22.0 programming
Chapter 3

All windows have a border that defines the limits of the window and
that is used to move or resize the window. At the top of the window are
several items. On the far left is the system menu icon (or box, as it is
commonly called). Clicking on this box causes the system menu to be
displayed. To the right of the system menu box is the window's title. At
the far right are the minimize and maximize boxes. The client area is the
part of the window in which your program activity takes place. Most
windows also have horizontal and vertical scroll bars that are used to move
text through the window.

SOME PRESENTATION MANAGEPI APPLICATION BASICS

Before developing the Presentation Manager application skeleton,
some basic information needs to be stated.

THE MAIN FUNCTION
The main() function must define and create the windows used by your

application. In addition, the main() function receives and dispatches mes-
sages sent by the Presentation Manager.

THE WINDOW FUNCTION
All Presentation Manager programs contain a window function. This

function's purpose is to process messages from the Presentation Manager.
Typically, the window function's body consists of a switch statement that
linksaspecificresponsetoeachmessagetheprogramwillrespondto.Your
program need not respond to every message that OS/2 sends. For mes-
sages that your program doesn't care about, you can let the Presentation
Manager provide default processing of them. Since there are hundreds of
different messages that the Presentation Manager can generate, it is com-
mon for most messages to simply be processed by the Presentation Man-
ager and not by your program.

All messages are 32-bit integer values. Further, all messages are linked
with any additional information that the message requires.

Presentation Manager programming overview 47
Chapter 3

WINDOW CLASSES
When your Presentation Manager program first begins execution, it

will need to define and register a w3.7idozo cJ¢ss. (Here, the word cZ¢ss is not
beingusedinitsc++sense.Inthisusage,itmeaussfyJcorfypc.)Whenyou
register the window class, you are telhng Presentation Manager about the
form and function of the window. However, registering the window glass
does not cause a window to come into existence. To actually create a
window requires additional steps.

THE MESSAGE LOOP
As explained earlier, OS/2 communicates with your program by

sendingitmessages.AllPresentationManagerapplicatiousmustestablish
a 777css¢gc Joap, usuauy this is inside the main() function. This loop reads
any pending message from the apphcation's message queue, acts on
messages, and dispatches messages back to OS/2. Any messages the
application cares to ignore can be handled by the default message handler
built into the Presentation Manager interface.

PRESENTATION MANAGER DATA TYPES
As you will soon see, the OS/2 API, including the Presentation Man-

ager API, does not use standard C data types such as int or char *. Instead,
all data types used by Presentation Manager have been defined by a
typedef within the OS2DEF.H (or an associated) file. These files are sup-
plied with your OS/2 development kit. Some of the most common types
are HWND, LONG, ULONG, BOOL, INT, and PCIIAR. HWND is a 32-bit
unsigned long that is used as a handle. A fefl7idJc is simply a value that
identifies some resource. LONG is defined as a 32-bit long, and ULONG
is defined as a 32-bit unsigned long. BOOL is also an unsigned long, and
is used primarily to indicate values that are either true or false (Boolean).
INT is a 32-bit integer and is simply another name for int. PCHAR is what
is used for a char pointer. As you will see, adding a leading P to most any
of the types turns the declaration into a pointer to that type.

In addition to the basic types described above, the API defines several
structures. The one that is needed by the first skeleton program is MSG.
The MSG structure holds a Presentation Manager message structure that
is used by the message queue. These structures will be discussed later in
this chapter.

48 0S/22.Oprogramming
Chapter 3

A PRESENTATION MANAGER SKELETON

Now that the necessary background information has been covered, it
is time to develop a minimal Presentation Manager application. As stated,
all Presentation Manager programs have certain things in common. In this
section a Presentation Manager skeleton is developed that provides these
necessary features. In the world of Presentation Manager programming,
application skeletons are commonly used because there is a substantial
"price of admission" when creating a Presentation Manager program.

Unlike DOS programs that you may have written, in which a minimal
program is about 5 lines long, a minimal Presentation Manager program
is approximately 50 lines long. Therefore, application skeletons are com-
monly used when developing Presentation Manager applications.

A minimal Presentation Manager program contains the main() func-
tion and a window function. The main() function must perform the
following general steps:

1. Initialize the window system.

2. Initialize the message queue.

3. Register the window procedure class.

4. Display the window.

5. Begin running the message loop.

6. Close the application resources.

The program will respond to all relevant messages. Since the skeleton
program does nothing but display its window, there are no messages it
must respond to. The only message that is included in the application
skeleton is one to tell the Presentation Manager to clear out the client area
of the window whenever the window is created or moved.

The operation of the main() function is straightforward. It first initial-
izes the link between the Presentation Manager and the program, registers
a new window class, creates a window, and executes its message loop. As
messages are received, they are dispatched to window_func() by calling
WinDispatchMsg(). The message loop terminates when the WM_QUIT is
received. This message is generated by choosing the Close option in the
OS/2 system menu.

Presentation Manager programming overview 49
Chapter 3

Before discussing the specifics, examine the following program, which
is a minimal Presentation Manager skeleton. It creates a standard window.
The window contains the system menu and is, therefore, capable of being
minimized, maximized, moved, resized, and closed. It also contains the
standard minimize and maximize icons. Before continuing, enter this
program and compile it. If you are using the C Set/2 compiler, use the
following command to compile the skeleton program:

ICC -B"/PM:PM" SKELETON.C

The -B"/PM:PM" flag tells the compiler to produce a Presentation
Manager program.

/* A Presentation Manager application skeleton. */

#def ine INCL WIN
#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG,
MPARAM, MPARAM) ;

main ()
(

HAB hand_ab,. /* Anchor Block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* Frame */
QMSG q_mess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*
FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*

FCF HORZSCROLL I /*

FCF_SHELLPOSITION,. /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* Get the Anchor Block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this window class */

50 0S/22.Oprogramming
Chapter 3

hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ)"Skeleton Window", /* title */
WS_VISIBLE, /* client style */

/* resource modules */
/* resource identifier */
/* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, OL, 0, 0))

WinDispatchMsg(hand_ab, &cLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (

HWND handle, ULONG mess,
MPARAM parml, MPARAM parm2)

(

switch(mess) {

case WM ERASEBACKGROUND:

/* By returning TRUE, the Presentation Manager
automatically clears the window each time the window
is resized or moved.

*/

return (MRESULT)TRUE;

clef ault :
/* All messages not handled by the window_func,

must be passed along to the Presentation Manager f or

Presentation Manager programming overview 51
Chapter 3

default processing.
*/

return WinDefwindowproc(handle, mess, parml, parm2) ;
)

return (MRESULT) FALSE,.

UNDERSTANDING THE PRESENTATION MANAGER SKELETON

Now that you have seen a Presentation Manager program, let's walk
through this skeleton program step-by-step.

First, all OS/2 programs, including Presentation Manager programs,
must include the header OS2.H. This file contains the API function proto-
typesandvarioustypesanddefinitionsusedbythepresentationManager.
By defining a macro prior to including OS2.H, you can include just the
subsectionoftheAPIyouwillbeusing.Inthisexample,sinceweareusing
the window part of the API, we define INCL_WIN. The example program
then goes through the various steps to define the message queue and
window class and to create the application window.

OBTAINING AN ANCHOR BLOCK
Cine of the first things you will want your Presentation Manager appli-

cation to do is obtain an anchor block handie by calling Winlnitialize(),
whose prototype is shown here:

HAB APIENTRY Winlnitialize(ULONG 7z¢7idJc);

Here, fe¢7idJc must be 0. Notice that the function returns HAB, which is
a pointer that points to the region of memory used by the Presentation
Manager to hold various bits of information about the window environ-
ment relative to the application program. This region of memory is called
the ¢7zcfeor block and the pointer to it is called the ¢7ic7zor bJock ha7idJc. If the
system cannot be initialized, a 0 is returned. The anchor block handle is
required as a parameter by many Presentation Manager services.

Unlike the core API services, which return 0 for success, many of the
Presentation Manager services return 0 on failure.

52 0S/22.0 programming
Chapter 3

CREATING A MESSAGE QUEUE
After initializing the window system, all Presentation Manager appli-

catiousmustcreateamessagequeueusingwincreateMsgQueue(),which
has this prototype:

HMQ APIENTRY WincreateMsgoueue(HAB ¢#cfeor_block, LONG
s,'zc);

The¢7tcfeorJ7Jockisthehandleobtainedusingwinlnitialize().Thesize
of the queue is determined by the value of s!.zc, or, if sz.zc is 0, the system
default is used. Generally, the system default queue size is acceptable.

Each element in the message queue is contained in a structure called
QMSG and defined like this:

struct (
HWND hwnd; /* handle of the recipient window */
ULONG msg; /* the message */
MPARAM mpl; /* additional message info */
MPARAM mp2; /* additional message info */
ULONG time; /* time message was generated */
POINTL ptl; /* position of mouse pointer */
ULONG reserved;

) QMSG;

The POINTL structure is defined like this:

struct (
LONG x;
LONG y;

) POINTL;

WincreateMsgQueue() returns a handle to the message queue or
NIL if the request fails.

REGISTERING A WINDOW CLASS
Before you can actually create a window, you must register its class

using WinRegisterclass(), whose prototype is shown here:

BOOL APIENTRY WinRegisterclass(HAB ¢7tcfeor_bJock,
PSzclassname,
PENWP window junc ,

Presentation Manager programming overview 53
Chapter 3

ULONG sfyJc,
ULONG storage_bytes);

Here, ¢7ic7zor_block is a pointer to the anchor block. The string pointed to
by cJ¢ss77¢777c is the name of the window class being registered. The address
of the window function must be passed as the third parameter. The style
of the window is specified by sfyJc. Finally, the number of bytes of addi-
tional storage beyond that needed by the window is specified by sfo7`-
¢gc_byfcs. Your program may use this extra storage for its own purposes.
For the examples in this book, this field will be 0.

The sort of window being registered is described by the value of sfyJc.
The only style we will be using in this book has the value 4L and is defined
as CS_SIZEREDRAW. Using this style causes the Presentation Manager to
inform your program each time the window is resized.

The WinRegisterclass() service returns non-zero if successful and
NULL on failure.

CREATING A STANDARD WINDOW
Once you have initialized the window system relative to your appli-

cation, created a message queue, and registered the class, it is time to create
a window. The easiest way to create a standard window is to use the
Wincreatestdwindow() API service. Its prototype is shown here:

HWND APIENTRY Wincreatestdwindow(HWND p¢rc7iLhe7idzc,
ULONG sftyJc,
PSZ classname ,
PSZ title,
ULOING client _style ,
HMODULE 777od#Zc,
ULONG reso%7'cc,
PENND client_handle).,

The p¢rc#Lfefl77dJc must be the handle of the parent window. When a
program begins execution, its parent is the screen, which, for the examples
in this book, has HWND DESKTOP for its handle.

The value of sfyJc determines several features of the window. It can be
a combination of several values. The most common, along with the macro
names given to them, are shown in Table 3-1.

54 0S/22.Oprogramming
Chapter 3

Macro Name

WS VISIBLE

WS MINIMIZED
WS MAXIMIZED
FCS TITLEBAR

FCS SYSMENU

FCS VERTSCROLL

FCS HORZSCROLL
FCS SIZEBORDER

FCS BORDER

FCS MINBUTTON
FCS MAXBUTTON
FCS MIPVAX

TABLE 311

Value

Ox80000000L

0xO1000000L

0xOO800000L

0xOOOOOoolL

0xOOO00002L

0xOOOOOO10L

0xOO000020L

0xOO000040L

0xO0000200L

0xOOOO1000L

0x00002000L

0x00003000L

Meaning

Make window visible
Minimize window
Maximize window
Include title bar
Include system menu
Include vertical scroll bar
Include horizontal scroll bar
Include sizing border
Use thin border
Include minimize icon
Include maximize icon
Include both min and max icons

Common Values for the WincreaLtestd:Window() Style Parameter

The cZ¢ss71¢777c parameter points to the string that identifies the class.
This should be the same string that was used in the call to
WinRegisterclass().

The string pointed to by fz.£Zc will be used as the title of the window for
identification purposes.

For most purposes the cJz.c71LsfyJc parameter should be OL, indicating
that the client window should be of the same style as the window class.

The 7'csot/rcc and 777odt/Zc parameters are used to identify a resource
module.Fortheexamplesinthischapter,noresourcemodulesareneeded,
so these parameters should be NULL and 0, respectively.

The Wincreatestdwindow() service returns a handle to the frame if
successful and 0 on failure.

Presentation Manager programming overview 55
Chapter 3

AN EXAMPLE OF THE MESSAGE LOOP

For your program to process messages, it will require the use of
WinGetMsg(), whose prototype is shown here:

BOOL APIENTRY WinGetMsg(HAB ¢7icfeor_block,
PQMSG 777css¢gc,
~ Zo€.71dozo,
ULONGf.rsf,
ULONG J¢s£);

The message retrieved from the queue is put in the queue structure
pointed to by 777css¢gc. If zt7€.7idozo is not 0, then it causes WinGetMsg() to
retrieve messages directed to only the specified window. Most of the time
your application will want to receive all messages. In this case, zu£.71dozo
should be 0. All messages are integers. The ¢.rsf and J¢sf parameters
determine the range of messages that will be accepted by defining the end
points of that range. If you wish to receive all messages, then/I.rsf and J¢s£
should both be 0. WinGetMsg() returns TRUE unless a termination mes-
sage is received, in which case it returns FALSE.

In many situations, once a message has been received, it is simply
dispatched to the correct window without further processing by your
program within the message loop. The service that sends messages along
their way is WinDispatchMsg(), whose prototype is shown here:

MRESULT APIENTRY WinmspatchMsg(IIAB ¢#cfeor_bJock,
PQMSG "css¢gr);

By calling this function, the message will automatically be routed to
the proper window function. WinDispatchMsg() returns the value re-
turned by the window function.

PPOGPAM TERMINATION

Before your program terminates it must do three things: close any
active windows, close the message queue, and deactivate the window

56 0S/22.Oprogramming
Chapter 3

system interface created by the Winlnitialize() service. To accomplish
these things, the Presentation Manager provides the services
WinDestroywindow(), WinDestroyMsgQueue(), and WinTerminate().
Their prototypes are shown here:

BOOL APIENTRY WinDestroywindow(HWND fe¢7idJc_zuz.7idow);
BOOL APIENTRY WinDestroyMsgQueue(HMQ fe¢7idJc+77sgQ);
BOOL APIENTRY WinTerminate(HAB ¢71cJlor_Z7Jock);

Here, fe¢7idzc zuz.7idozu is the handle of the window to be closed. The fe¢7i-
dzc_7#sgQ is t-he handle to the message queue to be destroyed. Finally, the
window system is disconnected by calling WinTerminate() with the an-
chor block handle.

AN EXAMPLE OF THE WINDOW FUNCTION
As mentioned earlier, all programs that are compatible with the Pre-

sentation Manager must pass to the Presentation Manager the address of
thewindowfunctionthatwillreceivemessages.InapresentationManager
application, the most important single function is the window function. It
receives the messages sent by the Presentation Manager and takes appro-
priate action. This function must be declared as shown here:

MRESULT EXPENTRY window_func (HWND jiandle, ULONG mess,
MPARAM parml, MPARAM parm2)

The window function receives the Presentation Manager messages in
its parameters. In essence, the Presentation Manager sends your program
amessagebycallingthewindowfunction.Thevalueof7t¢7idJcisthehandle
of the window receiving the message. The message itself is contained in
the integer 777css. Finally, some messages require further information,
which is put into the pflr777I and p¢r"2 parameters.

The sample window function presented earlier contains entries in the
switch statement for only two of the several common messages that can
be generated by the Presentation Manager. A more complete window
function template is shown here. It can be inserted into the original
skeleton program, replacing the existing window function. This window
function recognizes many of the most used messages.

/* This is a much more complete window function template. */

Presentation Manager programming overview 57
Chapter 3

MRESULT EXPENTRY window_func (HWND handle, ULONG mess,
MPARAM parml, MPARAM parm2)

(

switch(mess) {
case WM CREATE:

/* Perform any necessary initializations here. */
break;

case WM PAINT:
/* Refresh the window each time the WM_PAINT message

is received.
*/

break;

case WM ERASEBACKGROUND:

/* By returning TRUE, the PM automatically erases
the old window each time the window is resized
or moved. Without this, your program must
manually handle erasing the window when it changes
size or location.
*/

return (MRESULT) TRUE;

case WM CHAR:

/* Process keystrokes here. */
break;

case WM HSCROLL:

/* Process horizontal scroll request. */
break;

case WM VSCROLL:

/* Process vertical scroll request. */
break;

case WM MOUSEMOVE:

/* Process a mouse motion message. */
break;

case WM BUTTONIDOWN:

/* 1st mouse button is pressed. */
break;

case WM BUTTON2DOWN:

58 0S/22.Oprogramming
Chapter 3

/* 2nd mouse button is pressed. */
break;

case WM BUTTON3DOEN:

/* 3rd mouse button is pressed. */
break;

/* If required by your application, you may also need to
process these additional mouse messages:

WM BUTTONIUP

WM BUTTONIDBLCLK

WM BUTTON2UP

WM BUTTON2DBLCLK

" BUTTON3UP
WM BUTTON3DBLCLK

*/

clef ault :
/* All messages not handled by the window_func,

must be passed along to the PM f or clef ault
proc es s ing .

*/

return WinDefwindowproc(handle, mess, parml, parm2) ;
)

return (MRESULT)FALSE;
)

Because this program is a skeleton for future applications, it does not
do anything with the messages. However, you will soon see examples that
do. Also keep in mind that when your program does not actuauy need to
worry about a message, such as a program that does not have scroll bars,
its message can be removed from the switch statement. In this case, the
default processing will handle it.

The Presentation Manager can generate several different types of
messages. Some of the more common ones are shown in Table 3-2. Some
of these messages will be used in the sample programs developed in this
chapter and Chapter 4.

Let's look at the meaning of some of these messages.
When a window is created, the WM_CREATE message is sent to the

window function. This allows your program to initialize values or to
perform other startup operations.

Presentation Manager programming overview 59
___ ___

Chapter 3

Macro Name Value

WM BUTTONIDWN 0x0071
WM BUTTONIUP 0x0072
WM BUTTONIDBLCLK 0x0073
WM BUTTON2DWN 0x0074
WM BUTTON2UP 0x0075
WM BUTTON2DBLCLK 0x0076
WM BUTTON3DWN 0x0077
W.M BUTTON3UP 0x0078

WM BUTTON3DBLCLK 0x0079
WM CHAR 0x007A
VVM CREATE 0xOool

VVM DESTROY 0x0002

i/VM ERASEBACKGROUND 0x004F

W.M HSCROLL 0x0032

WM MOVE 0x0006
i/VM MOUSEMOVE 0x0070

W.M PAINT 0x0023
VVM SHOW 0x0005

WM SIZE 0x0007

WM VSCROLL 0x0031

WM_QUIT 0x0 02A

TABLE 3-2

Meaning

Button 1 down
Button 1 up
Double-click on button 1
Button 2 down
Button 2 up
Double-click on button 2
Button 3 dour
Button 3 up
Double-click on button 3
Keystroke occurred
Window has been created
Window is being destroyed
OK to erase background
request
Horizontal scrou
Window is being moved
Mouse has moved
Refresh window display
Window is shown or removed
Window is being resized
Vertical scroll

Window being terminated

Some Common Messages

As you know, the Presentation Manager auows the user to move and
resize windows. It also allows the user to cover part of a window with
another. These operations imply that all or part of the window must be
redrawn at some point in time. The Presentation Manager generates the

60 0S/2 2.0 programming
_________ ____ - - _

Chapter 3

WM PAn\IT message whenever the contents of the window must be
refre=hed.

ThewM_ERASEBACKGROUNDmessagetellsyourprogramthatthe
windowneedstobeerased,perhapsbecausethewindowisbeingmoved.By
havingthewhdowfunctionretumTRUE,youareallowingthePresentation
Managertodothisforyou.Otherwise,yourprogrammustdoit.

Each time a key is pressed, the WM_CIIAR message is generated. We
win be looking more closely at this message later. Each time the user
requests a vertical scroll the WM_VSCROLL message is generated. Each
timeahorizontalscrollisrequested,theWM_HSCROLLisgenerated.The
mouse messages are self-explanatory.

The window function does not need to explicitly process all the mes-
sages it receives. In fact, it is common for an application to process only a
few types of messages. So what happens, then, to the rest of the messages
receivedbythewindowfunction?Theansweristhattheyarepassedback
to the Presentation Manager for default processing using the
WinDefwindowproc() service. Its prototype is shown here:

MRESULT APIENTRY WinDefwindowproc(HWND fe¢7tdJe,
ULONG 77tcss¢ge,
MPARAM p¢r77tl ,
MPARAM p¢r77t2);

As you can see, the WinDefwindowproc() simply passes back to the
Presentation Manager the parameters it was called with. Any messages
received, but not processed, by window_func() are passed along to the
Presentation Manager via a call to WinDefwindowproc(). This step is
necessary because all messages must be dealt with in one fashion or
another.

USING A DEFINITION FILE

When you compiled the skeleton, you provided the necessary linker
command directly to the compiler. Linker commands can be placed in a
definition file, and then passed to the compiler or the linker. A dc¢.7tt.f t.ott
f.Jc is simply a text file that specifies certain information and settings
needed by your Presentation Manager program. As your programs grow

•.61Presentation Manager Programming Overview
Chapter 3

in complexity, you will find uses for the definition file. However, when
dealing with simple programs, a definition file is unnecessary.

All definition files use the extension .DEF. For example, the definition
file for the skeleton program could be called SKELETON.DEF. The com-
piler recognizes the .DEF extension and automatically passes the file to the
linker for processing. Here is a definition file that you can use to compile
the skeleton program.

NAME Winskel WINDOWAPI
DESCRIPTION 'Skeleton Program'
DATA MULTIPLE
HEAPSIZE 8192

STACKSIZE 8192E

This file specifies information that is used by the linker when creating
the executable file. The last argument of NAME corresponds to the option
passed to the linker when you originally compiled the skeleton program
(-B"/PM:PM").

Once you have created the definition file, you can use it by simply
including the file on the compiler command line.

ICC skeleton.c skeleton.clef

For small programs, such as many of the examples in this book, it is
not necessary to use the .DEF file. As we move on to more complex
examples, the reasons for using a .DEF file will become more apparent.

Nowthatyouknowhowtowriteabasicskeletonprogram,1et'smove
on and explore more features of the Presentation Manager.

CHAPTER

npocEsslNG MEssAGEs

AsexplainedinChapter3,thePresentationManagercommunicates
with your application by sending it messages. For this reason, the
processing of these messages is at the core of au Presentation
Manager applications. In the previous chapter you learned how to
create a Presentation Manager application skeleton. h this chapter,
that skeleton win be expanded to receive and process several com-
mon Presentation Manager messages.

WHAT ARE PPESENTATION MANAGEP MESSAGES?

There are hundreds of Presentation Manager messages. Each
message is represented by a unique 32-bit integer value. In the
headerfilePMWIN.H,therearestandardnamesforthesemessages.
Generally, you will use the defined name, not the actual integer
value,whenreferringtoamessage.HerearesomecorrmonPresen-
tation Manager messages:

WM CHAR

WM PAINT

64 0S/22.Oprogramming
Chapter 4

WM MOVE

WM BUTTON2UP

WM BUTTONIDOWN

Two other values accompany each message and contain information
related to the specific message. These 32-bit values are declared as VOID
pointers (MPARAM), but they actually can be holding one of many differ-
entdataitems,includinganinteger,asetofflagbits,orapointertoanother
data item such as a structure. They typically hold things like cursor or
mouse coordinates, the value of a keypress, or a system-related value such
as character size. As each message is discussed, the meaning of the values
contained in these message values will be described.

As mentioned in Chapter 3, the function that actually processes Pre-
sentation Manager messages is your program's window function. As you
should recall, this function is passed four parameters: the handle of the
window that the message is for, the message itself, and two additional
message parameters.

The information carried in the last two message parameters varies so
much that the Presentation Manager defines a set of macros for passing
and extracting the data from these items. A few of the popular ones are
described in Tables 4-1 and 4-2.

You will see some of these macros in use later in this chapter.

Macro Name

MPFROMP(p)
MPFROMHWND(hwnd)
MPFROMCHAR(ch)
MPFROMSHORT(s)
MPFROMLONG(1)

TABLE 4-1

Used for Passing

Pointers
Window handles
CIIAR, UCHAR, or BYTE
SHORT, USHORT, or BOOL
LONG or ULONG

Macros for Passing Data Through a MPARAM Variable

Processing Messages 65
Chapter 4

Macro Name

PVOIDFROM"P(mp)
HWNDFRO"P(mp)
CHARIFRoivrm(mp)
CHAR2FRO"P(mp)
CRAR3FROMMP(mp)
CRAR4FRohun(mp)
SHORTIFRO"P(mp)
SHORT2FRO"P(mp)
LONGFRO"P(mp)

TABLE 4-2

Used for Getting

jiny pointer value
Window handles
First char from a 32-bit value
Second char from a 32-bit value
Third char from a 32-bit value
Fourth char from a 32-bit value
Lower word from a 32-bit value
Upper word from a 32-bit value
Any LONG or ULONG

Macros for Extracting Data from a MIARAM Variable

OUTPUTTING TEXT

Outputting text to a client window is not as easy as you might expect
becausenoneoftheCruntimefunctious,suchasprintf(),canbeused.The
reasonforthisrestrictionhastodowiththefactthattheCstandardoutput
functions have no knowledge of a windowed environment. Beyond the
fact that your programs must use special Presentation Manager output
functions to display text in a window, outputting text is still not a trivial
task.ThisisbecausethePresentationManagermaintainsalevelofabstrac-
tion between your program and the output device.

THE PRESENTATION SPACE AND THE DEVICE CONTEXT
When your program outputs something to the "screen," it is actuauy

outputtinginformationtoaprcsc7t£¢£z.o73spflcc(PS).Thinkofapresentation
space as being a data structure that contains several pieces of information
about the size and form of the "screen. " The reason that the word scrcc7t has

66 0S/22.Oprogramming
Chapter 4

been placed in quotes in the foregoing sentences is that a presentation
space is not necessarily linked to the screen; it could be linked with the
printer, for example. The device that the presentation space is actuany
linked to is called its dcz7€.cc co7ifcx£ (DC). For the rest of this discussion, the
device context is assumed to be the screen.

There are three types of presentations spaces: the normal-PS, the
micro-PS, and the cached micro-PS. The examples in this chapter will use
only the cached micro-PS, but it is important that you understand the
general concept behind all three.

The normal-PS is the most flexible of the three presentation spaces.
Your program will want to use the normal-PS when it will be writing to
devices other than the screen or when a screen display will be in existence
a long time without a refresh. A micro-PS is similar to a normal-PS except
that it requires less memory and has fewer capabilities. Finally, the cached
micro-PS is the simplest presentation space to use and requires the least
memory. However, the cached micro-PS operates only with the screen so
it cannot be used to send output to any other device.

PROCESSING THE WM PAINT MESSAGE
Each time-a window is moved, resized, or uncovered, the

WM_PAINT message is sent to the program's window function. Each
time this message is received, your program must completely redisplay
any output that was in the window. The process is often referred to as
rc/rcsfe€.7ig the window. Although it is possible to output to the window
during the processing of other messages, the most common place for
this to occur is when handiing the WM_PAn\IT message. For this reason we
will begin our discussion of text output as it relates to the processing of the
WM_PAINT message.

Before you can output anything to the screen, you need to obtain a
presentation space handle. There are several ways to do this. However,
when processing the WM_PAINT message, the easiest way is to use the
WinBeginpaint() service to return a micro-PS handle. The prototype for
WinBeginpaint() is shown here,

HPS APIENTRY winBeginpaint (IIWND ho7idJe,
UPS p_space,
PRECTL rcgl.o7i);

where ho71dJc is the handle of the window that will be drawn to and p_sp¢cc
is the handle of the presentation space. If this value is 0, then a micro-PS

ProcessingMessages 67
Chapter 4

will automatically be allocated and its handle returned by the service. The
structure pointed to by rcgz.o7i will contain the coordinates of the region
that needs to be updated. This parameter may be 0 in cases where it is
simply easier for the program to update the entire window rather than a
portion.

The WinBeginpaint() function serves a second important function: it
informs the Presentation Manager that a window refresh is beginning. For
this reason, it is a good idea to call to WinBeginpaint() immediately after
a WM_PAn\IT message is received.

The simplest way to write a line of text to a window is to use the
GpicharstringAt() service, whose prototype is shown here,

LONG APIENTRY GpicharstringAt(HPS p_sp¢cc,
PPOINTL Joc,
LONG sz.zc,
PCH sfrz.7ig);

where p_sp¢cc is the presentation space handle. The structure pointed to
by Joc contains the coordinates of the location at which the string will be
written. The sz.zc parameter holds the size and sf rz.7ig points to the actual
string.

The return value of GpicharstringAt() is somewhat complex and is
not required by the examples in this chapter.

The POINTL structure is defined like this:

struct POINTL { LONG x; LONG y,. } ,.

It is critical to keep in mind that the X,Y locations in the POINTL
structure are specified in pcJs, not in characters.

Although in its default mode no cursor is seen in a window, each
window does keep track of the position of an invisible "cursor." The
position of this invisible cursor is called the cz47'rc77£ posztz.o7z. Many of the
output services, including GpicharstringAt(), affect the location of the
current position. After the string has been displayed using
GpicharstringAt(), the current position is advanced to the pel im-
mediately following the last character in the string.

The GpicharstringAt() service does not process carriage returns or
line feeds, so your program must manually advance to new lines when
needed.

68 0S/22.0 programming
Chapter 4

Before the code that processes the WM_PAIP\IT message finishes, it
must issue a call to WinEndpaint(), which has this prototype:

BOOL APIENTRY WinEndpaint(IIfs p_space);

Here, p_specs is the handle of the presentation space updated by the
program. If WinEndpaint() is successful, it returns TRUE; otherwise, it
retuus FALSE.

Assumingthenecessaryvariabledeclaratious,thefollowingfragment
outputs "This is a test" on the screen, starting at the lower left comer.

case WM PAINT:
/* get a handle to the presentation space */
p_space = WinBeginpaint(handle, 0, NULL) ;
/* output a message that starts at the lower left corner */
coords.x = 0;
coords.y = 0;
GpicharstringAt(p_space, &coords,14, "This is a test");
/* close the presentation space */
WinEndpaint(handle) ; break;

Each time the window associated with this code fragment is moved,
resized, or uncovered, the WM_PAn\IT message is received and the line of
text win be redisplayed. An entire program that uses the code fragment is
shorn here:

/* Output a string. */

#def ine INCL WIN
#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq,. /* message queue */
HWND hand_frame; /* Frame */
QMSG |mess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /* have a title bar */

ProcessingMessages 69
Chapter 4

FCF SIZEBORDER I

FCF MINIAX I
FCF SYSMENU I

FCF VERTSCROLL I

FCF HORZSCROLL I

F C F_S HE LL PO S I T I ON ;

/* be a sizeable window */
/* have min and max buttons */
/* include a system menu */
/* vertical scroll bar */
/* horizontal scroll bar */
/* default size and location*/

hand_ab = Winlnitialize(0); /* Get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ)"Skeleton Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL),. /* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg(hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPS p_space;
POINTL coords,.

70 0S/22.Oprogramming
Chapter 4

switch(mess) {
case WM PAINT:

/* get a handle to the presentation space */
p_space = WinBeginpaint(handle, 0, NULL) ;

/* output a message, start at the lower left corner */
coords.x = 0;
coords.y = 0;
GpicharstringAt(p_space, &coords,14, "This is a test");

/* close the presentation space */
WinEndpaint (handle) ;
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

To compile this program, be certain to use the method discussed in
Chapter 3:

ICC -B"/PM:PM" prog_name

If you prefer, define and include a definition file. You can use the
definition file we discussed in Chapter 3. The minimum .DEF file for this
program is shown here:

NAME prog_name WINDOWAPI

DISPLAYING TEXT IN COLOP
You can change both. the foreground and background colors used to

display a character using Gpisetcolor() and GpisetBackcolor(), respec-
tively. The prototypes are shown here.

BOOL APIENTRY Gpisetcolor(HPS z7_sp¢cc, LONG cozor);
BOOL APIENTRY GpisetBackcolor(HPS p_sp¢cc, LONG coJor);

Processing Messages 71
Chapter 4

Here,p_sp¢ccisthehandletothepresentationspaceandcozoristhedesired
color, which can be one of the values shown in Table 4-3.

Keep in mind that once you set a foreground or background color, that
color remains in effect until it is reset.

In the Presentation Manager's default mode of operation, once the
foreground color is set, au subsequent screen output operations take place
in that color. However, this is not the case for the background color

Macro Name

CLR DEFAULT
CLR WHITE
CLR BLACK
CLR BACKGROUND
CLR BLUE

CLR RED
CLR PINK
CLR GREEN
CLR CYAN
CLR YELLOW
CLR NEUTRAL
CLR DARKGRAY
CLR DARKBLUE
CLR DARKRED
CLR DARKplpur
CLR DARKGREEN
CLR DARKCYAN
CLR BROWN
CLR PALEGREY

TABLE 4-3
Macro Nanes for Color Settings

72 0S/22.Oprogramming
Chapter 4

because, by default, the new background color is not "mixed" into the
background color of the window. In order to mix the color in, you must
call the GpisetBackMix() service, whose prototype is shown here,

BOOL APIENTRY GpisetBackMix(HPS p_sp¢cc, LONG 771£.x);

wherep_sp¢ccisthepresentationspaceofthewindowand777€.xisthevalue
thatdetermineshowthebackgroundcolorismixedwiththecurrentscreen
color. The most common values are shown here:

Macro Name

BM DEFAULT
BM OVERPAINT
BM LEAVEALONE

Meaning

Use system default
Overwrite current color
Leave current background color
unchanged

To have the background color replace the current screen color, use
BM OVERPAINT.-Although not used by the sample programs in this chapter,

GpisetMix() can be used to set the mix of the foreground color. The
prototype is shown here.

BOOL APIENTRY GpisetMix(HPS p_space, LONG 77t€.x);

Here, 77".x specifies how the foregrourrd. color will be displayed. The most
common values are shown here:

Name Value Meaning

FM DEFAULT 0L Use default
FM OR IL OR text onto screen
FM OVERPAn`IT 2L Overwrite current screen

color

FM XOR 4L XOR text onto screen
FM LEAVEALONE 5L Leave color attributes

unchanged
FM AND 6L AND text onto screen

You may want to experiment with this service on your own.

Processing Messages 73
_ ___ _

Chapter 4

The following program uses GpisetBackcolor(), Gpisetcolor(), and
GpisetBackMix() to display a string using blue foreground and red
background.

/* Output blue text on red background.
*/

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab,. /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* Frame */
QMSG qLmess,. /* message queue */
ULONG flFlags,. /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*

FCF MINMAX I /*

FCF_s¥SMm\u I /*
FCF_VERTSCROLL I /*
FCF HORZSCROLL I /*
FCF_SHELLPOSITION,. /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location*/

hand_ab = Winlnitialize(0),. /* Get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ,.

74 0S/22.Oprogramming
___ _ _ _____

Chapter 4

hand frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ)"Skeleton Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ,.

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPAiAM parm2)

(
HPS p_space,.
POINTL coords;

switch(mess) {
case WM PAINT:

/* get a handle to the presentation space */
p_space = WinBeginpaint(handle, 0, NULL) ;

/* use red background */
GpisetBackcolor (p_space, CLR_RED) ;

/* set mix to overwrite */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* set foreground to blue */
Gpisetcolor (p_space, CLR_BLUE) ;

coords.x = 0;
coords.y = 0;
GpicharstringAt(p_space, &coords,14, "This is a test");

Processing Messages 75
Chapter 4

/* close the presentation space */
WinEndpaint (handle) ,.
break'.

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc (handle, mess, parml, parm2) ;

)

return (MRESULT) 0;
)

ACCESSING THE PRESENTATloN SPACE
By using WinGetps(), you can obtain a handle to a cached micro-PS

without using WinBeginpaint(). The prototype for WinGetps() is shown
here:

HPS APIENTRY WinGetps(HWND zu{.#_ha7tdJe);

Here, zt7z.71_fe¢7idJc is the handle of the window you will be outputting to.
The handle to the presentation space is returned by the service.

Since you can only call WinBeginpaint() when the WM_PAn\IT mes-
sageisreceived,thewinGetps()serviceisusefulwhenyouwanttooutput
information during the processing of another message. (An example of
this will be shown in the next section.)

When your routine is done outputting, it must call WinReleaseps(),
which has this prototype,

BOOL APIENTRY WinReleaseps(HPS p_sp¢cc);

where p_sp¢cc is the presentation space handle obtained by a call to
WinGetps().

RESPONDING TO A KEYPRESS

OneofthemostcommonPresentationManagermessagesisgenerated
whenakeyispressed.Asmentionedinpassingearlierinthischapter,your

76 0S/22.Oprogramming
Chapter 4

Presentation Manager programs cannot read keyboard input in the tradi-
tional fashion. For example, your programs may not can such standard
library functions as gets() or scanf(). Instead, each time a key is pressed, a
WM_CIIAR message is sent to the active window.

The keystroke information is encoded into the two message par-
ameters as follows: the first 16 bits of the first parameter contain several
flags that tell you what type of key was pressed. These flags are shown
in Table 4-4. It's tine to use the macros described earlier in this chapter.
The macro for extracting the first 16 bits of an MPARAM message param-
eter is SHORTIFROMMP(parml).

Thenext8bitsofthefirstparameterisarepetitioncount.Thisindicates
how many times the key has been auto-repeated. The macro for getting
this byte is CHAR3FROMMP(parml). Generally, you win not need to
worry about the auto-repeat information.

The high-order 8 bits of the first parameter holds the key's scan code.
Certain keys, such as the arrow keys, do not have character codes, which

Macro Name

KC CRAR
KC VIRTUALKEY
KC SCANCODE
KC SHIFT
KC CTRL
KC ALT
KC KEYUP

KC PREVDOWN
KC LONEKEY
KC DEADKEY
KC COMPOSITE
KC INVALIDCOMP
KC TOGGLE
KC INVALIDCHAR

TABLE 4-4

Meaning When Set

Character
Special key
Scan code
Shift key
Control key
ALT key
Key is being
released
Key was down
Single key
Unused key
Key combination
hvalid combination
Toggle key
Invalid key

Keypress Flag Values

Processing Messages 77
Chapter 4

meansthatthescancodeisusedtoidentifythem.Thescancodeisobtained
by the macro CHAR4FROMMP(parml).

The second parameter associated with the WM_CIIAR message con-
tains two items. The lower 16 bits contains the character code, assuming
that a regular key has been pressed. That is, if the KC_CHAR flag is set in
the first parameter, a valid character code will be found in the lower 16 bits
of the second parameter. However, if a special key is pressed, the
KC_CHAR flag will not be set and the character code of the second
parameter will be 0. For U.S. style keyboards, only the first 8 bits is of
interest, but for foreign systems, the full 16 bits may be needed. To get the
character code, use the SHORTIFROMMP(parm2) macro.

The high-order 16 bits of the second parameter holds the virtual
key code for the key that was pressed. All keystrokes are assigned a
virtual code. However, for normal keys this code is 0. To obtain the virtual
key code, you can use the SHORT2FROMMP(parm2) macro. The virtual
key codes, along with their corresponding macro names, are shown in
Table4-5.Asyoucansee,somevirtualkeycodesarenotabletobegenerated
by the keyboard, but, instead, are generated by the Presentation Manager
itself.

Macro Name

VK CANCEL
VK BACK
VK TAB

VK CLEAR
VK RETURN
VK SHIFT
VK CONTROL
VK ALT
VK ALTGRAF
VK PAUSE
VK CAPITAL

TABLE 4-5

Key

CANCEL

BACKSPACE

TAB

PAUSE

CAPS LOCK

Virtual Key Codes

78 0S/22.0 programming
Chapter 4

Macro Name

VK ESCAPE
VK SPACE
VK PGUP
VK PGDN
VK END
VK HOME
VK LEFT

VKUP
VK RIGHT
VK DOWN
VK SELECT

VK PRINT
VK EXECUTE

VK INSERT
VK DELETE

VK SCRLLOCK
vK r"LOcK
VK P"PAD0
vK n"pADi
VK N"PAD2
VK NIMPAD3
VK -PAD4
VK r"pAD5
vK r"pAD6
VK P"PAD7
vK r"pAD8
vK r"pAD9

TABLE 4-5

Key

ESC

SPACEBAR

PGUP

PGDN

END

HOME

LEFT ARROW

UP AREOW

RIGHT AREOW

DOINAREOW

INS

DEL

SCROLL LCX=K

NUM LacK

Number pad 0
Number pad 1
Number pad 2
Number pad 3
Number pad 4
Number pad 5
Number pad 6
Number pad 7
Number pad 8
Number pad 9

Virtual Key Codes (con+inued)

Processing Messages 79
Chapter 4

Macro Name

VK ADD
VK SUBTRACT

VK NILTIPLY
VK DIVIDE
VK DECIRAL
VK ENTER
VKFI
VKF2

VKF3

VKF4
VKF5

VKF6

VKF7

VKF8

VKF9

VK Flo
VK Fll
VK F12

VK F13

VK F14

VK F15

VK F16

VK HELP
VK_SYSREQ

VK MENU
VK INS
VK DEL

TABLE 4-5

Key

Number pad +
Number pad -
Number pad *
Number pad /
Number pad .
Number pad ENTER

FI

F2

F3

F4

F5

F6

F7

F8

F9

Flo

Fll

F12

F13

F14

F15

F16

SYSRQ

Same as VK ALT
Same as VK INSERT
Same as VK DELETE

Virtual Key Codes (cor\+ined)

80 0S/22.Oprogramming
Chapter 4

Each time you press a key, a 777¢kc signal is generated. Each time you
release the key, a b7'c¢k signal is sent. When processing the WM_CHAR
message,itisimportanttounderstandthatyourprogramwillbereceiving
both these signals. Most of the time you will only want to take an action
on keypress, not key release. To check for this, you must examine the state
of the KC_KEYUP flag in the first parameter. If it is 0, then the key is being
pressed. If it is 1, then the key is being released.

The following program reads keys from the keyboard and displays
normal characters on the screen. It processes the 77z¢kc and skips the Z77'c¢k
signal. Keep in mind that before the window created by this program can
receive input, you must click on the window to make it active. (only when
the window is active does it become the focus of the keyboard.) Notice that
this program uses the WinGetps() and WinReleaseps() functions.

/* This program reads keystrokes. */

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* Frame */
QMSG cLmess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*

FCF MINIAX I /*
FCF SYSMENI I /*
FCF VERTSCROLL I /*

FCF HORZSCROLL I /*

FCF SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location*/

Processing Messages 81
Chapter 4

hand_ab = Winlnitialize(0); /* Get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0); /* start a queue

if(!WinRegisterclass(/* register this
hand_ab ,
(PSZ) class,
(PFNWP) window_func,

C S_S I ZEREDRAW ,
0))

exit (1) ;

*/

window class */
/* anchor block */
/* class name */
/* window function */
/* window style */
/* no storage */

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ)"Skeleton Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &qLmess) ,.

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPS p_space;
POINTL coords;
CHAR ch;

switch(mess) {

case WM_CHAR: /* Process keystrokes here. */

82 0S/22.Oprogramming
Chapter 4

/* process only keypresses, not key releases */
if (SHORTIFROMMP(parml) & KC_KEYUP)

break;

if (SHORTIFROMMP(parml) & KC_CHAR)

(

p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix(p_space, BM_OVERPAINT) ;

coords.x = 20,.
coords.y = 20;

/* extract the character */
ch = SHORTIFROMMP(parm2) ;

/* display the character */
GpicharstringAt(p_space, &coords,1, &ch) ;

WinReleaseps (p_space) ;
)

break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

Keep in mind that the virtual key code and the scan code are two
separate pieces of information. The scan code more or less relates to a
specific keyboard implementation. However, the virtual key code is com-
pletely under the control of OS/2 and the Presentation Manager, which
means it can map different keys into the virtual codes to accommodate
changing situations, such as foreign languages. To see the difference
between the virtual and scan codes, substitute this window function into
the foregoing program. This version displays the scan and virtual codes
for each key pressed.

/ Processing Messages 83
Chapter 4

/* Window function to display scan and virtual key codes. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(
HPS p_space;
POINTL coords;
CHAR ch,.
CHAR str[80] ;
SHORT i;

switch(mess) {

case WM_CHAR: /* Process keystrokes here. */
/* process only keypresses, not key releases */
if (SHORTIFROMMP(parml) & KC_KEYUP)

break'.

else /* display any keypress */
(

p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ,.
coords.x = 20;
coords.y = 20;

/* extract the scan code */
ch = CHAR4FROMMP(parml) ;

/* display the scan code */
sprintf (str, "scan code %3d", ch),.
GpicharstringAt(p_space, &coords, strlen(str) , str) ,.
coords.x = 20;
coords.y = 0,.

/* extract virtual code */
i = SHORT2FRO"P(parm2) ,.

/* display the virtual code */
sprintf(str, "virtual code %3d", i);
GpicharstringAt(p_space, &coords, strlen(str) , str) ,.
WinReleaseps (p_space) ;

)

break;

84 0S/22.Oprogramming
Chapter 4

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT) 0;
)

A BETTER APPROACH TO SCREEN OUTPUT
As stated, often the best time for your Presentation Manager compat-

ible programs to output information to the screen is when a WM_PAn\IT
message is received. (Keep in mind that it is not technically wrong to
output information to the screen during the processing of other messages,
as was done in the previous two examples.) The reason for this is the
Presentation Manager assumes that it is your program's job, in general, to
maintain and update the screen whenever all or part of the window
becomes invalid. A window is invalidated when it becomes uncovered,
resized, or moved. Put another way, when a window's size or position is
changed, or if a previously covered window is uncovered, then all or part
of the information that was displayed in that window will need to be
redrawn. This is the entire purpose of the WM_PAINT message. Output
performed during the processing of another message will be lost if the
window is moved or changed (unless, of course, the routine that processes
the WM_PAII\IT message can refresh this output as well).

In order to fully redraw the window each time a WM_PAIP\IT message
is received implies that the WM_PAINT code must be capable of com-
pletely reconstructing the screen. To get a taste of what this entails, the
following program is a rewrite of the one that reads a keystroke and
displays the key. In this version, the code associated with the WM_CHAR
message simply loads the variable ch. It is the code associated with the
WM_PAII\IT message that actually outputs the character.

/* A second approach to displaying keystrokes on
the screen.

*/

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

Processing Messages 85
Chapter 4

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass",.

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq,. /* message queue */
HWND hand_frame; /* Frame */
QMSG cLmess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*
FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*

FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* Get the anchor block */

hand_mq = WincreateMsgQueue (hand_ab, 0) ;

if (!WinRegisterclass(/* register this
hand_ab ,
(PSZ) class,
(PFNWP) window_func,
CS_SIZEREDRAW,
0))

exit (1) ;

/* start a queue */

window class */
/* anchor block */
/* class name */
/* window function */
/* window style */
/* no storage */

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Skeleton Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */

86 0S/22.0 programming
Chapter 4

NULL); /* pointer to client */
/* message loop */

while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))
WinDispatchMsg(hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPS p_space;
POINTL coords;
static char ch='\0' ;

switch(mess) {
case WM PAINT:

/* Refresh the window each time the WM_PAINT message
is received.
*/

p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

coords.x = 20;
coords.y = 20;

/* display the character */
GpicharstringAt(p_space, &coords,1, &ch) ;

WinReleaseps (p_space) ,.

break;

case WM_CHAR: /* Process keystrokes here. */
/* process only keypresses, not key releases */
if (SHORTIFROMMP(parml) & KC_KEYUP)

break;

Processing Messages 87
Chapter 4

if (SHORTIFROMMP (parml) & KC_CHAR)

(
ch = SHORTIFROMMP(parm2) ;

/* update the window each time a key is pressed */
Winupdatewindow (handle) ;

)

break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)
return (MRESULT) 0;

)

This approach to screen output is very common in Presentation Man-
agercompatibleprograms.Inthismethod,alloutputisessentiallydirected
to internal buffers that are written to the screen when the WM PAn\IT
message is received.

While handling the WM_PAn\IT message in the skeleton is quite
simple, it must be emphasized that most real world versions of this
program will be more complex because most windows contain consider-
ably more output.

Since it is your program's responsibility to restore the window if it is
resized or overwritten, you must always provide some mechanism to
accomplish this. In real world programs, this is usually accomphshed in
one of three ways. First, your program can simply regenerate the output
by computational means. This is most feasible when no user input is used.
Second, your program can maintain a virtual screen that you simply copy
to the window each time it must be redrawn. Finally, in some instances,
you can keep a record of events and replay the events when the window
needs to be redrawn. Which approach is best depends completely upon
the application. Most of the examples in this book won't bother to redraw
the window because doing so typicauy involves substantial additional
code that often just muddies the point of an example. However, your
programs will need to restore their windows in order to be valid Presen-
tation Manager applications.

88 0S/22.Oprogramming
Chapter 4

RESPONDING TO MOUSE MESSAGES

Since the Presentation Manager is, to a great extent, a mouse-based
operating system, all Presentation Manager programs should respond to
mouse input. Because the mouse is so important, there are several types
of mouse messages. This section examines the two most common. These
are WM_BUTTONIDOWN and WM_BUTTON2DOWN, which are gen-
eratedwhentheleftbuttonandrightbuttonarepressed,respectively.Like
all other messages, mouse messages not processed by the window
function are passed to the WinDefwindowproc() function.

Let's begin with an example. Add the responses to the two mouse
messages to the switch statement in the window function, as shown here:

case WM_BUTTON2DOWN: /* process right button */
/* get a handle to the presentation space */
p_space = WinGetps (handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
GpicharstringAt(p_space, &coords,14, "Right Button");

WinReleaseps (p_space) ;
break;

case WM_BUTTONIDOWN: /* process left button */
/* get a handle to the presentation space */
p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
GpicharstringAt(p_space, &coords,14, "Left Button") ;

WinReleaseps (p_space) ;
break;

Processing Messages 89
Chapter 4

Wheneitherbuttonispressed,themouse'scurentX,Ylocationisspecified
inthesecondmessageparameterpassedtothewindowfunction.Thelocation
canbeaccessedbyusingtheas/2bullt-inmacros:SHORTIFROMMP(parml)
for the X location and SHORT2FRchMAI?(parml) for the Y location. The
mouse-message response functions use these coordinates as the location to
display their output. That is, each time you press a mouse button, a message
will be displayed at the mouse pointer 's location.

Here is the complete skeleton that responds to the two mouse mes-
sages discussed.

/* This example displays a message when either of the
mouse buttons is pressed.

*/

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* Frame */
QMSG q_mess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*
FCF MINIAX I /*
FCF SYSMENU I /*

FCF VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; / *

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location*/

hand_ab = Winlnitialize(0); /* Get the anchor block */

90 0S/22.0 programming
Chapter 4

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue

if(!WinRegisterclass(/* register this
hand_ab ,
(PSZ) class,
(PFNWP) window_func,

C S_S I ZEREDRAW ,
0))

exit (1) ;

*/

window class */
/* anchor block */
/* class name */
/* window function */
/* window style */
/* no storage */

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Skeleton Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL),. /* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDest roywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPS p_space;
POINTL coords;
static char ch='\0';

switch(mess) {
case WM_BUTTON2DOWN: /* process right button */

/* get a handle to the presentation space */
p_space = WinGetps(handle) ;

/* use overwrite mode */

Processing Messages 91
_____ _ ___ _ _

Chapter 4

GpisetBackMix (p_space, BM_OVERPAINT) ,.

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ,.
GpicharstringAt(p_space, &coords,14, "Right Button") ,.

WinReleaseps (p_space) ;
break;

case WM_BUTTONIDOWN: /* process left button */
/* get a handle to the presentation space */
p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
GpicharstringAt(p_space, &coords,14, "Left Button") ;

WinReleaseps (p_space) ;
break,.

case WM ERASEBACKGROUND :
return (MRESULT)TRUE;

default :
return WinDefwindowproc(handle, mess, parml, parm2) ,.

)

return (MRESULT)0;

Figure 4-1 shows sample output from this program.

GENEPATING PRESENTATION MANAGER MESSAGES

It is possible for your application to post Presentation Manager mes-
sages. At first, you might wonder why your program would need to
generate a message, but actually you will find that there are many times

92 0S/22.Oprogramming
_______ _ __ _ _

Chapter 4

Left Button

Left Button

Right Button

FHght Button

Let(Button

Flight Button

FIGURE 4-1

Sample output from the application skeleton

when it is handy to generate a message based on other messages your
application has received. After all, Presentation Manager applications are
based on processing messages.

DEFINING AND GENERATING MESSAGES
Not only can your application generate system messages, but it also

candefineandgenerateyourowncustommessages.Toillustratethis,let's
modify the previous program to respond to the WM_BUTTONIUP mes-
sage.Agoodrespousemightbetoerasethelinejustprintedtothewindow.
Toaccomplishthis,wewfllgenerateourownmessage,andrespondtothat
message by erasing the previous screen output.

To define your own message, you simply assign your custom message
its own unique ID number. Since the Presentation Manager reserves the
first4096messages,simplychooseanumbergreaterthan4096foryourID
number. To post a Presentation Manager message to the system, your pro-
grarnwi]lcalltheWinpostMsg()APIfunction.Itsprototypeisshownhere:

ProcessingMessages 93
Chapter 4

BOOL APIENTRY WinpostMsg(HWND 7{ztJ71d,
ULONG 77zsg,
MPARAM 777Z71,
MPARAM 773p2);

Here, fezu7id is the handle of the window that you want to send the message
to. The parameter 77zsg is the message being sent. The last two parameters
are filled with the appropriate information relating to the message.

Here is a reworked version of the previous example that still responds
to the same two mouse messages as before, but also responds to the
WM_BUTTONIUP message. The action taken by the WM_BUTTONIUP
message is to simply post the custom message MY_MESSAGE using the
WinpostMsg() function.

In the following example, when either mouse button is pressed, the
X,Y coordinates of the current mouse position are displayed. When the left
mouse button is released, a custom message called "MY_MESSAGE" will
be generated. As you will see, "MY_MESSAGE" simply prints a blank
string right over the top of the previous printed string, effectively erasing
the previously displayed coordinates. If the right mouse button is pressed,
the coordinates remain displayed in the window.

/* This example processes the WM_BUTTONxUP and
the WM_BUTTONXDOWN mouse messages.

*/

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#def ine MY MESSAGE 4097

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ,.

char class[] = "Myclass",.

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */

94 0S/22.Oprogramming
Chapter 4

HWND hand_frame; /* Frame */
QMSG qLmess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF_SIZEBORDER I /*
FCF_MINIAX I /*
FCF_SYSMENI I /*
FCF_VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* Get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Skeleton Window", /* title */
WS_VISIBLE, /* client style */

/* resource modules */
/* resource identifier */
/* pointer to client */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

Processing Messages 95
Chapter 4

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPS p_space;
static POINTL coords;
CHAR str[16] ;

switch (mess)
(

case WM_BUTTON2DOWN: /* process right button press */
/* get a handle to the presentation space */
p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
sprintf(str, "(%d,%d)", coords.x, coords.y);
GpicharstringAt(p_space, &coords, strlen(str) , str) ;

WinReleaseps (p_space) ;
break;

case WM_BUTTONIDOWN: /* process left button press */
/* get a handle to the presentation space */
p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* output a message */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
sprintf(str, "(%d,%d)", coords.x, coords.y);
GpicharstringAt(p_space, &coords, strlen(str) , str) ;

WinReleaseps (p_space) ;
break;

case WM_BUTTON2UP: /* process RIGHT button release */

96 0S/22.Oprogramming
Chapter 4

break;

case WM_BUTTONIUP: /* process LEFT button release */
/* post a user-defined message */
WinpostMsg(handle, MY_MESSAGE, (MPARAM) 0, (MPARAM)0) ;
break;

case MY_MESSAGE: /* Process custom message. */
(

PCHAR blank = " ";

p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ; `

/* overwrite last display, use same coords */
GpicharstringAt (p_space, &coords,

strlen(blank) , blank) ;

WinReleaseps (p_space) ;
)

break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

default :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

Now that you have learned how to create, generate, and process the
basic Presentation Manager messages, you can move on to creating mes-
sage boxes and menus, which are the subject of Chapter 5.

CHAPTER

MESSAGE BOXES AND

MENUS

Now that you know how to construct a basic Presentation Manager
skeletonthatreceivesandprocessesmessages,itistimetoexplorethe
PresentationManager'suserinterfacecomponents.Althoughyoucan
writeapresentationManagerapplicationthatappearsjustlikeacos
appHcation, doing so is not in the spirit of Presentation Manager
programming.InorderforyourPresentationManagerapplicatiousto
conform to Presentation Manager general design principles, you will
need to communicate with the user using several different types of
special windows. There are three basic types of user interface win-
dows:messageboxes,menus,anddialogboxes.Thischapterdiscusses
message boxes and menus. (The next chapter examines dialog boxes).
Asyouwfllsee,thebasicstyleofeachofthesewindowsispredefined
bythePresentationManager.Youneedsupplyonlythespecificinfor-
mation that relates to your appHcation.

Keep in mind that message boxes and menus are cfez7d zt7z.7tdozt7s
of your original application windows. This means they are owned
by your application and are dependent upon it. They cannot exist
by themselves. Your application must always create a main window.

I,,,,+,,,,",,,,,,,;,,,,,,,,,,,,,",,,,,,,,,,,,,,,,,,,,,,,,,,,:,,,,,,,,,,,,:,,",,,,,,,,,,,,,,,,,,,,:,,,,,,,,,,,,,,,,,,,,,,",,,,,,

98 0S/22.0 programming
Chapter 5

MESSAGE BOXES

By far the simplest interface window is the message box. A message
box simply displays a message to the user and waits for an acknowledg-
ment. It is possible to construct message boxes that allow the user to select
among a few basic altematives, but, in general, the purpose of a message
box is simply to inform the user that some event has taken place.

To create a message box, use the WinMessageBox() API function. Its
prototype is shorn here:

ULONG APIENTRY WinMessageBox(HWND p¢re7tf,
INND ozu7tcr,
PSZ text,
PSZ caption,
USHORT zu€.71€.d,
ULONG sfyJc);

Here,p¢rc77fisthehandleoftheparentwindowandozt77tcristhehandle
of the owner of the message box. The fcxf parameter is a pointer to a string
that will appear inside the message box. The string pointed to by c¢p£3.o7t
isusedasthecaptionforthebox.Thevalueofzui.7iz.distheIDofthemessage
box, and the value of sftyJc determines the exact nature of the message box,
including what type of buttons will be present. Some of the most common
values for sfyJc are shown in Table 5-1. These macros are defined in
PMWIN.H and you can OR together two or more of these macros so long
as they are not mutually exclusive.

WinMessageBox() returns either the user's response to the box or
MBID_ERROR if an error occurred. The possible return values for the
buttons are shown here:

Button Pressed
Abort
Retry
Ignore
Cancel
No
Yes
OK
Enter

Pleturn Value
MBID ABORT
MBID RETRY
MBID IGNORE
MBID CANCEL
MBID NO
MBID YES
MBID OK
MBID ENTER

MessageBoxesandMenus 99
Chapter 5

Value

MB ABORTRETRYIGNORE

MB ICONEXCLAMATION
MB ICONHAND
MB ICONINFORMATION
MB_ICONQUESTION
MB OKCANCEL

MB RETRYCANCEL

MB YESNO
MB YESNOCANCEL

TABLE 5-1

Effect

Displays Abort, Retry, and Ignore
pushbuttons
Displays exclamation point icon
Displays a stop sign icon
Displays an information icon
Displays a question mark icon
Displays OK and Cancel
pushbuttons
Displays Retry and Cancel
pushbuttons
Displays Yes and No pushbuttons
Displays Yes, No, and Cancel
pushbuttons

Some Common Message Box Types

To display a message box, simply call the WinMessageBox() function.
The Presentation Manager will display it at its first opportunity. You do
not need to obtain a device context or generate a WM_PAINT message.
WinMessageBox() handles all of these details for you.

Here is a simple example that displays a message box when you press
one of the mouse buttons:

/* A minimal Presentation Manager skeleton that
demonstrates message boxes

*/

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ,.

100 0S/22.0 programming
Chapter 5

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* frame */
QMSG q_mess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*

FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func,/* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Skeleton Window", /* title */
WS VISIBLE, /* client style */

/* resource modules */
/* resource identifier */
/* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

MessageBoxesandMenus 101
Chapter 5

WinDispatchMsg(hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(
ULONG response;

switch(mess) {
case WM_BUTTON2DOWN: /* process right button */

response = WinMessageBox(HWND_DESKTOP,
handle ,
"Press One: " ,
"Right Button",

0,

MB_ABORTRETRYIGNORE) ;

switch(response) {
case MBID ABORT:

WinMessageBox (HWND_DESKTOP, handle,
"', "Abort", 0, MB_OK),.

break;

case MBID RETRY:
WinMessageBox (HWND_DESKTOP, handle,

"', "Retry", 0, MB_OK);

break;

case MBID IGNORE:
WinMessageBox (HWND_DESKTOP, handle,

"', "Ignore", 0, MB_OK);

break;
)

break;

case WM_BUTTONIDOWN: /* process left button */
response = WinMessageBox (HWND_DESKTOP,

handle ,
"Continue? " ,

102 0S/22.0 programming
Chapter 5

"Left Button",

0,

MB ICONHEND I MB YESNO) ;

switch(response) {
case MBID YES:

WinMessageBox (HWND_DESKTOP, handle,
"', "Yes Selected", 0, MB_OK);

break;

case MBID NO:
WinMessageBox (HWND_DESKTOP, handle,

"', "No Selected", 0, MB_OK);

break;
)

break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

Each time a mouse button is pressed, a message box is displayed. For
example, pressing the right button displays the message box shown in
Figure 5-1.

Asyouwfllsee,whenyoupresstherightbutton,amessageboxdisplays
the buttons Abort, Retry, and Ignore. Depending upon your response, a
second message box will be displayed that indicates which button you
pressed.Pressingtheleftmousebuttoncausesamessageboxtobedisplayed
that contains a stop sign. This box allows a Yes or a No response.

Before continuing, it might be a good idea to experiment with message
boxes, trying different types.

MessageBoxes andMenus 103
Chapter 5

FIGURE 5-1

Sample message box

INTRODUCING MENUS

As you know, in the Presentation Manager the most common element
of control is the menu. Virtually all OS/2 programs have some type of
menuassociatedwiththem.Becausemenusaresocommonandimportant
in Presentation Manager applications, the Presentation Manager API pro-
videssubstantialbuilt-insupportforthem.Asyouwfllsee,addingamenu
to a window involves these relatively few steps:

1. Define the form of the menu in a resource file.

2. Load the menu when your program creates its main window.

3. Process menu selections.

InthePresentationManager,thetoplevelofamenuisdisplayedacross
the top of the window. (You should be accustomed to this approach
because it is used by virtually all OS/2 progranrs.)

Beforebeginning,itisnecessarytoexplainwhatpresentationManager
resources and resource files are.

104 0S/22.Oprogramming
___ _ __

Chapter 5

USING RESOURCES

The Presentation Manager defines several common types of objects as
7'cso#rccs. Resources include things such as menus, icons, dialog boxes, and
bitmapped graphics. Since a menu is a resource, you need to understand
resources before you can add a menu to your program.

A resource is created separately from your program, but is added to
the .EXE when your program is linked. Resources are contained in 7'csot{7'cc
/z.Jcs, which have the extension .RC. In general, the filename should be the
same as that of your program's .EXE file. For example, if your program is
called PROG.EXE, then its resource file should be called PROG.RC.

Resource files will be generated differently, depending on what they
contain. Some are text files that you create using a standard text editor.
Others, such as icons, are most easily generated using one of the available
icon editing tools, such as the Icon Editor supplied with the Presentation
Manager Development Toolkit. The example resource files in this chapter
are simply text files.

Resource files are not C programs, and therefore not compiled with
the standard compiler. Instead, they must be compiled using a rcso#7'cc
co771p#cr. The resource compiler converts an .RC file into a .RES file, which
may then be linked with your program.

COMPILING .RC FILES
Once you have created an .RC file, you can compile it into a .RES file

usingtheIBMresourcecompilercalledRC.EXE.Youthenlinkthe.RESfile
with your program. If you are using the command line compiler, the
process works like this: First, compile your program. Next, invoke the
resource compiler as shown here:

RC f ilename

You don't need to specify an extension. This will cause the resource
compiler to compile the resource file and automatically link it to your
program. (This assumes that the name of the resource file is the same as
the name of the executable file.)

To compile a resource file if you are using the IBM WorkFrame/2,
simply add the name of the .RC file to your program's project file. This
causes the resource compiler to automatically execute.

MessageBoxesandMenus 105
Chapter 5

CREATING A SIMPLE MENU

Before a menu can be included, you must define its content in a
resource file. All menu definitions have this general form:

MENI Mc71#JD [opf z.o71s]
BEGIN

SUBMENI Tz.£Jc, £7t fnyJD
BEGIN
MENUITEM

END
SuBMENU Title, EntrylD
BEGIN
MENUITEM

END
END

Here, Mc77#JD is the ID of the menu, a unique number used to identify
the menu. The keyword MENU tells the resource compiler that a menu is
being created. There are several opfz.o7is that can be specified when creating
the menu; you may use any nonconflicting combination. The macros used
for apfz.o7i are shown in the following table. (Again, these macros are
defined in PMWIN.H.)

Option

DISCARDABLE

FIXED
LOADONCALL
MOVEABLE
PRELOAD

Meaning

Menu may be removed from memory when no
longer needed
Menu is fixed in memory
Menu is loaded when used (default)
Menu may be moved in memory (default)
Menu is loaded when your program begins
execution

106 0S/22.0 programming
Chapter 5

Following the MENU keyword are one or more SUBMENU key-
words. Associated with a SUBMENU is the T€.fzc, which is the string to be
displayed in the menu border. Following the Tc.£Zc is the £7ifnyJD, which,
like the Mc71#JD, is a unique number identifying this menu. Inside a
SUBMENU are the MENUITEMs. The general form for these statements
is shown here:

MENUITEM "Jfc77£Texf ", Jfe771JD [, Jfc7#SfyJe] [, Affr£.ZJ]

Here, Jfc777Tcxf is the name of the menu selection, such as "Help" or
"File." Jfc7#JD is a unique integer associated with a MENUITEM that will

besenttoyourpresentationManagerapplicationwhenaselectionismade.
Typically, these values are defined as macros inside a header file that is
included in both your application code and in the .RC resource file. The
final two optional fields are the style and attributes of the MENUITEM.
By default, the MENUITEM Jfc777SfyJc is MIS_TEXT, and all the attribute
bits are off, which means the menu item is active and enabled.

ThevaluesforJfc777SfyJc(definedinpMWIN.H)areshowninTable5-2.
When selected, most definitions of MENUITEM post a WM_COMMAND
message. Exceptions to this are described in the table.

The values for the A#r!.b option of the MENUITEM (also defined in
PMWIN.H) are shown in Table 5-3, along with the descriptions of their
meaning.

INCLUDING A MENU IN YOUR PROGRAM

In order for a menu resource to be displayed in a window, it must be
added to the window using the Wincreatestdwindow() service. First,
you must add the FCF_MENU to the list of styles appearing in the second
parameter,whichisflFlagsintheexampleprograms.ThisletsOS/2know
that you will be using a menu resource. Second, you must pass the
PresentationManagertheidentifierofthemenu,thatis,themenuID.This

MessageBoxes and Menus 107
Chapter 5

Option

MIS TEXT

NIS BITRAP
NIS SEPARATOR

MIS Ol/VNERDRAW

NIS SUBMENU
NIS MULTMENU
NIS SYSCOMMAND

NIS HELP

NIS STATIC

MIS BUTTONSEPARATOR
NIS BREAK
NIS BREAKSEPARATOR

NIS GROUP
NIS SINGLE

TABLE 5.2

Meaning

Default, normal text
Item display is a bitmap
Item is divided by a horizontal line.
An item of this type cannot be checked,
disabled, highlighted, or selected
This item is drawn by the owner and
posts WM_DRAWITEM and
WM_MEASUREITEM messages
Item is a submenu
Multiple choice submenu
This item generates a
WM_SYSCOMMAND mess age
A WM_HELP message is generated
when an item of this style is selected
This item is used to display information
only
Item is a button, pointer selectable
This item begins a new row or column
Used in submenus only, same as
MIS_BREAK, but also draws a dividing
ine
Starts a multiple choice group
Used in MIS GROUPs to denote radio
buttons

Types Of Menu Styles

is done using the resources parameter. For example, this sample call uses
resource identifier MENU1, which identifies menu number 1 as it is
defined in the resource file.

108 0S/22.0 programming
Chapter 5

/* define the frame contents */
f lFlags = FCF_MENU I /*

FCF TITLEBAR I /*
FCF SIZEBORDER I /*
FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*

FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

use a resource menu */
have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Menu Example Window", /* title */
WS_VISIBLE, /* client style */
0, /* resource modules */
MENU1, /* resource identifier */
NULL) ,. /* pointer to client handle */

When the window is created, a menu bar will be displayed beneath
the title bar. In this example, the menu bar will contain the selections
Sample and Test.

Keep one thing firmly in mind: a resource file can contain resources
for several different windows. However, all the resources for a specific
window must all use the same resource identifier.

Option

MIA NODISMISS
MIA FR"ED
MIA CHECKED
MIA DISABLED

MIA HILITED
TABLE 513

Meaning

Don't close menu after selection of item
Draw a frame around the item
Draw a check mark next to the item
Item cannot be selected
Attribute is true when the item is selected

Attrivutes of Menu Styles

MessageBoxesandMenus 109
Chapter 5

RECEIVING MENU MESSAGES

Each time a menu selection is made, the Presentation Manager passes
a message to your program. For most menu selections, this will be the
WM_COMMAND message. The low-order word of the first parameter
contains the identifier associated with the item selected. For our purposes, we
canignoretheotherinfoimationpassedwiththeWM_COMMANDmessage.

SAMPLE MENU PROGRAM

Here is a program that demonstrates the use of a menu resource
created in the previous section. Enter it at this time. To see a menu in action,
first create this resource file and name it MENU.RC:

; Sample menu resource f ile

#include "menu.h"

MENU MENUI PRELOAD

BEGIN
SUBMENU "Test", SUBI

BEGIN
MENUITEM "Option 1", ONE
MENUITEM "Option 2", TWO

END

SUBMENU ``Sample", SU82
BEGIN

MENUITEM "Option 1", THREE
MENUITEM "Option 2", FOUR

END

END

Now, create a header file to include in both the resource file and
example program which defines the constants used to identify the re-
sources defined in the resource file. Enter the following into a file named
MENU.H:

/* define macro constants for menu example. */

110 0S/22.0 programming
Chapter 5

#def ine MENU1 1
#def ine SUB1 10
#define SU82 20
#define ONE 101
#defing TWO 102
#def ine THREE 103
#define FOUR 104

Next, enter this program. Be sure to name your program and your
menu resource file the same, except for the extension. Use .RC for your
resource file, and .C for your program.

/* A menu example. */
#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#include "menu.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* frame */
QMSG Lmess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_MENU I /* use a resource menu */

FCF TITLEBAR I /* have a title bar */
FCF SIZEBORDER I /* be a sizeable window */
FCF MINMAX I /* have min and max buttons */
FCF SYSMENU I /* include a system menu */
FCF VERTSCROLL I /* vertical scroll bar */
FCF HORZSCROLL I /* horizontal scroll bar */
FCF_SHELLPOSITION; /* default size and location */

hand_ab = Winlnitialize(0); /* Get the Anchor Block */

MessageBoxesandMenus 111
Chapter 5

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func,/* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Menu Example Window" ,
WS_VISIBLE, /* client style */
0, /* resource modules */
MENU1, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &q_mess) ,.

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(
HPS p_space;
POINTL coords,.
static char ch='\0';

switch(mess) {
case WM CREATE:

/* Perform\ any necessary initializations here */

112 0S/22.0 programming
Chapter 5

break;

case WM COMMAND:

p_space = WinGetps(handle) ;

/* use overwrite mode */
GpisetBackMix (p_space, BM_OVERPAINT) ;

/* see what item selected */
switch(SHORTIFROMMP(parml)) {

case ONE:
coords.x = 20;
coords.y = 60;
GpicharstringAt (p_space, &coords,

8, "test one");
break;

case TWO:
coords.x = 20;
coords.y = 40;
GpicharstringAt (p_space, &coords,

8' „test two");
break;

case THREE:
coords.x = 110;
coords.y = 60;
GpicharstringAt (p_space, &coords,

10, "sample one");
break;

case FOUR:
coords.x = 110;
coords.y = 40;
GpicharstringAt (p_space, &coords,

10, "sample two");
break;

)

WinReleaseps (p_space) ;
break;

case WM ERASEBACKGROUND:

return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

MessageBoxes and Menus 113
Chapter 5

return (MRESULT)0;

Compile the program just as you have compiled the previous exam-
ples. After compiling the program, invoke the resource compiler, which
will compile your menu resource and link it with your executable pro-
gram. If you forget to do the second step, your window will not appear
and you will need to hit CTRL+c to kill your program. The fouowing two
commands will build a correct and complete program using the example
resource file and example program (assuming you name your example
files MENU.C and MENU.RC):

ICC -B"/PM:PM" MENU.C

RC MENU

As you can see when you try this program, each menu selection
produces a unique response from the program. When you run it, your
screen will look like that shown in Figure 5-2.

FIGURE 512

Sample output from the menu exanple

114 0S/22.Oprogramming
Chapter 5

ADDING MENU ACCELERATOR KEYS

Before leaving menus, we will discuss one more feature relating to
them. This feature is the accelerator key. AcccJcr¢for keys are special key-
strokes that you define which, when pressed, automatically select a menu
optioneventhoughthemenuinwhichthatoptionresidesisnotdisplayed.
Put differently, you can select an item directly by pressing an accelerator
key, bypassing the menu entirely. The term ¢cccJcr¢for keys is an accurate
description because pressing one is generauy a faster way to select a menu
item than by first activating its menu and then selecting the item.

To define accelerator keys relative to a menu, you must add an accel-
erator key table to your resource file. All accelerator table defihitious have
this general form:

ACCELTABLE MenulD [option]
BEGIN
Key, sublD1, type |,type| ...
Key, sublD2, type |,type| ...
Key, sublD3, type |,type] ...

Key, sublDn, type I,type| ...
END

Here,Mc71#JDistheIDofthemenuthattheacceleratorswillbeapplied
to and is also the ID of the accelerator table. The option field specifies one
of the memory loading options. Key is the keystroke that selects the item,
and s#Z7JD77 is the ID value associated with the desired item. The fypc
specifies what combination of keys will activate the accelerator. The fypc
options may be one of the following: ALT, SHIFT, CONTROL, CHAR,
SCANCODE, VIRTUALKEY, HELP, or SYSCOMMAND.

ALT, SHIFT, or CONTROL selects which keys will need to be pressed
along with Key to activate the menu. CHAR specifies the ASCH represen-
tation of Key; this is the default. VIRTUALKEY is its counterpart, specify-
ing that Key is a virtual key. If SCANCODE is specified, then the scancode
for Key is used. Specifying the HELP style causes a WM_HELP message to
be generated instead of the usual WM_COMMAND, and SYS-
COMMAND causes a WM_SYSCOMMAND to be generated instead of
the WM_COMMAND message.

MessageBoxes and Menus 115
Chapter 5

The value of Key will be a quoted character, an ASCH integer value
corresponding to a key, or a virtual key code. If a quoted character is used,
then it is assumed to be an ASCII character. If it is a virtual key, then fypc
must be VIRTUALKEY.

If the key is an uppercase quoted character, then its corresponding
menu item will be selected if it is pressed while the CApS LoCK function is
active. If it is a lowercase character, then its menu item will be selected if
the key is pressed by itself.

Az#.r£#flJkeyisasystem-independentcodeforavarietyofkeys.Virtual
keys include the function keys Fl through F12, the arrow keys, and various
non-ASCH keys. They are defined by macros in the header file PMWIN.H.
All virtual key macros begin with VK_. The function keys are VK_Fl
through VK_F12, for example. You should refer to PMWIN.H for the other
virtual key code macros. To use a virtual key as an accelerator, simply
include OS2.H in your .RC file, and then specify its macro for the Key and
specify VIRTUALKEY for its ftypc. You may also specify ALT, SHIFT, or
CONTROL to achieve the desired key combination.

Here are some examples:

"a", 44, CONTROL,ALT
"a", 13 CHAR

"a", 86, CONTROL
"a", 11, ALT

VK_F2,16 VIRTUALKEY

select
select
select
select
select

CTRL+ALT+A
A
CTRL+A
ALT+A
F2

Here is the MENU.RC resource file from the previous example. It also
contains accelerator key definitions for the menu items specified.

; Sample menu resource f ile

#include <os2.h>
#include "menu.h"

MENU MENUI PRELOAD
BEGIN

SUBMENU "Test", SUBI
BEGIN

MENUITEM "Option 1 \tcTRL+a", ONE
MENUITEM "Option 2 \tcTRL+b", TWO

END
SUBMENI "Sample", SU82

BEGIN

116 0S/22.0 programming
Chapter 5

MENUITEM "Option 1 \tALT+a", THREE
MENUITEM "Option 2 \tALT+b", FOUR

END

END

; Def ine menu accelerators
ACCELTABLE MENUI PRELOAD
BEGIN

"a", ONE, CONTROL

"b", TWO, CONTROL

"a", THREE, ALT
"b", FOUR, ALT

END

Notice that the menu definition has been enhanced to display which
accelerator key selects which option. Each accelerator key description in
the menu is separated from its text string using a tab.

LOADING THE ACCELERATOR TABLE
Even though the accelerators are contained in the same resource file as

the menu, they are not automaticauy loaded. In order to load the accelerator
table, the FCF_ACCELTABLE flag must be specified along with the other
window definition flags in the API function call to Wincreatestdwindowo.
For example, the fouowing fragment shows the appropriate flags to set in
order to load an accelerator window along with all the options used so far in
this book:

/* define the frame contents */
f lFlags = FCF_MENU I /*

FCF ACCELTABLE I /*

FCF TITLEBAR I /*
FCF SIZEBORDER I /*

FCF MINMAX I /*

FCF SYSMENI I /*
FCF VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

use a resource menu */
use an accelerator table */
have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

To try using accelerators, substitute the following version of main()
into the preceding application and add the accelerator table to your
resource file.

MessageBoxes and Menus 117
Chapter 5

/* A menu example */
#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#include "menu.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass",.

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* frame */
QMSG q_mess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass",. /* class name */

/* define the frame contents */
f lFlags = FCF_MENU I /*

FCF ACCELTABLE I /*
FCF TITLEBAR I /*
FCF_SIZEBORDER I /*
FCF MINIAX I /*
FCF SYSMENI I /*
FCF VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION,. /*

use a resource menu */
use an accelerator table */
have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ,. /* start a queue */

if (!WinRegisterclass(/* register this window class
hand_ab, /* anchor block

exit (1) ;

(PSZ) class, /* class name */
(PFNWP) window_func,/* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

118 0S/22.0 programming
Chapter 5

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Menu with Accelerators" ,
WS_VISIBLE, /* client style */
0, /* resource modules */
MENU1, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg(hand_ab, &q_mess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

Compile your program using the same two steps as described earlier,
and run the program. You will see that when the key sequence is hit, the
same action is taken as if you had selected the menu option.

Before moving on to the next chapter, you should experiment on your
own using message boxes, menus, and accelerators. Try the various op-
tions and see what they do.

CHAPTER

I]IALOG BOXES

After menus, there is no more important Presentation Manager
interface element than the dialog box. A dialog box is a type of
windowthatprovidesamoreflexiblemeansbywhichtheusercan
interact with your application. In general, dialog boxes allow the
user to select or enter information that would be difficult or impos-
sible using a menu.

It is important to understand that dialog boxes both generate
messages (when accessed by the user) and receive messages (from
your application). A message generated by a dialog box indicates
what type of interaction the user has had with the dialog box. A
messagesenttothedialogboxisessentiallyaninstructiontowhich
thedialogboxmustrespondbyperformingtheappropriateaction.
You will see examples of this type of message passing later in this
chapter.

I,\::€,,1,,,,,:,,,,

120 0S/2 2.0 programming
Chapter 6

HOW DIALOG BOXES INTERACT WITH THE USER

A dialog box interacts with the user through one or more co71£7.oZ
zoz.7idozt7s. A control window is a specific type of input or output window.
Acontrolwindowisownedbyitsparentwindow,which,fortheexamples
presented in this chapter, is the dialog box.

CONTPOLS
The Presentation Manager supports many controls, including: but-

tons, list boxes, entry boxes, combination boxes, spin lists, notebooks,
containers, value sets, and sliders. Along with these fancy controls, there
are also the many standard frame controls, such as the title bar and scroll
bar. There are other controls besides the ones listed here. Some controls are
a combination of the functionafity of two or more other controls.

In the course of explaining how to use dialog boxes, the examples in
this chapter will illustrate the use of the pushbutton. The pushbutton is by
far one of the most used window controls, and knowledge of its use will
helpprovideabasicunderstandingofdialogboxes.Chapter7isdedicated
to exploring the use of the other more complex controls available for use
inside dialog boxes.

A pushbutton is one button in a "class" of buttons. Abutton is a control
that the user "pushes" @y clicking the mouse or by tabbing to it and then
pressing ENTER) to activate some response. You have already been using
pushbuttous in message boxes. For example, the OK button that we have
been using in most message boxes is a pushbutton. There can be one or
more pushbuttons in a dialog box. Each button carries its own message
back to the program that displayed the dialog box.

MODAL VERSUS MODELESS DIALOG BOXES
There are two types of dialog boxes: 7#od¢J and 777odczcss. The most

common dialog boxes are modal. A modal dialog box demands a response
before the parent program will continue. That is, a modal dialog box will
not allow you to refocus input to another part of the parent window
without first responding to the dialog box.

A modeless dialog box does not prevent the parent program from
running.Thatis,itdoesnotdemandarespousebeforeinputcanbefocused
to another part of the parent window. When using modeless dialog boxes,
it is important to consider the asynchronous operation this type of dialog

DialogBoxes 121
Chapter 6

box will create. However, this is not really a problem since Presentation
Manager programs are all message based.

Since the modal dialog box is the most common, it is the type of dialog
box examined in this chapter.

RECEIVING DIALOG BOX MESSAGES

A dialog box is a window (albeit, a special kind of window). Events
that occur within it are sent to your program using the same message-
passing mechanism the main window uses. However, dialog box mes-
sages are not sent to your program's main window function. Instead, each
dialog box that you define will need its own function. This function must
have the following prototype. (Of course, the name of the function may be
anything that you like.)

MRESULT EXPENTRY dialog_func (HWND fe¢7idJe,
ULONG 771css,
MPARAM p¢r77t I,
MPARAM p¢r7772);

As you can see, this function receives the same parameters as the main
window function. However, it differs from the main window function in
that it returns a true or false result. This function is often referred to as the
dz.¢Jog proccd#rc. Like your program's main window function, the dialog
procedure will receive many messages. If it processes a message, then it
must return TRUE. If it does not respond to a message, it must call
WinDefDlgproc(), the default dialog procedure. The prototype for the
default dialog procedure is shown here:

MRESULT APIENTRYwinDefDlgproc (HWND fe¢7tdJe,
ULONG 771Sg,
MPARAM 7#pl,
MPARAM 777p2);

Asyoucansee,theprototypeforthedefaultdialogprocedureparallels
the prototype for the user-defined dialog procedure.

122 0S/2 2.0 programming
Chapter 6

In general, each control within a dialog box win be given its own
resource ID. Each time that control is accessed by the user, a message will
be sent to the dialog procedure, indicating the ID of the control and the
type of action the user has taken. That function will then decode the
message and take appropriate actions. This process is equlvalent to the
way messages are decoded by your program's main window function.

ACTIVATING A DIALOG BOX

To activate a dialog box, you must call the WinDlgBox() API function,
whose prototype is shown here:

ULONG APIENTRY WinDlgBox(HWND p¢rc7tf,
HWND ozt77icr,
PFENP Dialogjunc ,
I"ODULE rc,
ULONG !.d,
PvorDparams);

Here, p¢re7if is a handle to the parent window and is often set to
HWND DESKTOP. After the call, oztJ7tcr will contain the handle of the
window-that controls the dialog. The Dz.flJog_¢7tc parameter contains a
pointer to the dialog procedure for this dialog box. If the resource defini-
tions are not contained in the executable file, you supply the resource file
handleinthercparameter.Thez.dparametershouldcontaintheIDnumber
for the dialog as defined in the resource file. The p¢r¢77ts parameter is used
for application-defined data. This information is passed to the dialog
procedure.

After a dialog box terminates, you must release the procedure by
calling the API function WinDismissDlg(). It has this prototype:

BOOL APIENTRY WinDismissDlg(HWND fr¢#dze,
ULONG res#Jf);

Here,ha7tdzcistheparentwindowhandle,andrcsttJfistheanswerreceived
from the dialog box control.

DialogBoxes 123
Chapter 6

The following code fragment of a window function and dialog func-
tion example illustrates how to activate and terminate a dialog box.

/* this is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {

WinDlgBox(HWND_DESKTOP, handle, dialog_func, 0, DLG1, 0) ;

)

/* this is the dialog procedure */
MRESULT EXPENTRY dialog_func (HV\IND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {

WinDismissDlg(handle, OK) ;

CREATING A SIMPLE DIALOG BOX

For the first dialog box, a simple example will be created. This dialog
boxwiucontainonepushbuttonthat,whenpressed,willsimplycausethe
dialogboxtoberemovedfromthescreen.Thedialogboxwinalsocontain
the system menu and a title bar.

124 0S/22.0 programming
__ _ __ _

Chapter 6

While this and other examples in this chapter don't do much with the
informationprovidedbythedialogbox,theyillustratethecentralfeatures
that you will use in your own applications.

THE DIALOG BOX HESOURCE FILE
A dialog box is another resource that is contained in your program's

resourcefile.Beforedevelopingaprogramthatusesadialogbox,youwill
needaresourcefilethatspecifiesone.Althoughitispossibletospecifythe
contents of a dialog box using a text editor, entering its specifications as
youdowhencreatingamenu,thisisseldomdone.Instead,mostprogram-
mers use the dialog editor supplied with the IBM Workset/2 Toolkit. The
main reasons for this are that dialog box definitions involve relatively
complex specifications and the placement of the various items inside the
dialog box is best done interactively. For these reasons, the resource files
in this chapter were created using the dialog editor. However, since the
complete resource files for the examples in this chapter are supplied in
theirtextform,youcansimplyenterthemastext.Justrememberthatwhen
creating your own dialog boxes, you will want to use the dialog editor.

E Note: Since most dialog boxes are created using the dia-
log editor, no explanation of the dialog box definition in
theresourcefileisgiveninthischapter.However,theIBM

Presentation Manager Programming Reference inchades such aL de-
scription if you are interested.

The following resource file defines the necessary information to dis-
play a simple dialog box. Included in this definition are a title, a system
menu, and one pushbutton. Take the time to enter it into your computer
now, and call it MYDIALOG.RC.

; Sample dialog box resource file.
#include <os2.h>
#include "mydialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE

BEGIN
DIALOG "My Dialog", DLG1, 69, 9,148, 84,

WS VISIBLE, FCF_SYSMENU I FCF TITLEBAR
BEGIN

PUSHBUTTON "Push", ONE, 56, 36, 40,14

DialogBoxes 125
Chapter 6

END

END

Also enter the following defihitious for the resource identifiers into a
header file called MYDIALOG.H:

/* macro constants for dialog box example */
#def ine DLG1 100
#def ine ONE 101

THE DIALOG BOX WINDOW FUNCTION
Each dialog box has a dialog procedure that is called when the dialog

box generates messages. The following dialog function responds to the
events that can occur within the example dialog box MYDIALOG:

/* this is the dialog procedure */
MRESULT EXPENTRY dialog_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {
case WM COMMAND:

switch (SHORTIFROMMP(parml)) {
case OK:

WinDismissDlg(handle, OK) ,.
break;

)

clef ault :
return WinDefDlgproc(handle, mess, parml, parm2) ;

)
return (MRESULT)0;

)

Each time a control within the dialog box is accessed, a WM_COM-
MAND message is sent to dialog_func(), and the ID of the affected control
is placed in p¢r7771.

The dialog procedure, dialog_func(), processes the messages that can
be generated by the box. In this first example, of course, there is only one
button to push. When the user presses the button, the dialog box is
terminated by a call to the API function WinDismissDlg().

126 0S/2 2.0 programming
. _ _ ____

Chapter 6

i¥
33=-- ee .---81:.:

a

dr #
¥.

es.
rs

REi=.

3=-RE

'¥

EfRE se

RE i¥|
#- I -g:=stF¥¥gr£:g¥¥ee:

!E

Bg! ¥ F¥

RE
a§c

ae=

L2.``.

¥RE
se EELEL¥RE

a!ffi. E¥nl
¥-;

•g mt=

=£
88

RE
RE as.

RE ** g exRE

RE

FIGURE 6-1

Sample output from the first dialog box program

THE FmsT DiALOG Box SAMPLE PROGRAM
Here is the entire dialog box example. When the program begins

exeoution, only the system level menu is displayed on the menu bar. The
title"DialogBoxTest"appearsinthemenubar.Bypressingtheleftmouse
button,theusercausesthedialogboxtobedisplayed.Cincethedialogbox
is displayed, selecting the pushbutton causes the dialog box to close. A
sample screen is shown in Figure 6-1.

/* a simple dialog box example */
#def ine INCL_WIN
#def ine INCL_GPI

#include <os2.h>
#include "mydialog.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM)
MRESULT EXPENTRY dialog_func (HWND, ULONG, MPARAM, MPARAM)

DialogBoxes 127
Chapter 6

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq,. /* message queue */
HWND hand_frame; /* frame */
QMSG q_mess,. /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass",. /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF_SIZEBORDER I /*
FCF_MINMAX I /*
FCF SYSMENI I /*
FCF_VERTSCROLL I /*
FCF_HORZSCROLL I /*
FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0),. /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func,/* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ,.

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Dialog Box Test",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

128 0S/22.0 programming
Chapter 6

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg(hand_ab, &q_mess) ;

/* shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* this is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

switch(mess) {

case WM BUTTONIDOWN: /* left mouse button */
WinDlgBox(HWND_DESKTOP, handle, dialog_func, 0, DLG1, 0) ;
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

/* this is the dialog procedure */
MRESULT EXPENTRY dialog_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

switch(mess) {

case WM COMMAND:

switch (SHORTIFROMMP(parml)) {

case ONE:
WinDismissDlg(handle, ONE) ;
return (MRESULT) TRUE;

DialogBoxes 129
Chapter 6

)

clef ault :
return WinDefDlgproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

You can compile this program by using the same method used in
Chapter 5. First compile the C program. Next compile and combine the
resource file using the resource compiler:

ICC -B"/PM:PM" MYDIALOG.C

RC MYDIALOG

RESPONDING TO MULTIPLE DIALOG BOX MESSAGES

You have seen how easy it is to create dialog boxes, but the first
example only handles one message. Before heading into Chapter 7, which
explores many of the controls available through the dialog box, you need
to see how to recognize and process multiple messages from dialog boxes.

The following example resource file defines three pushbuttous. Each
of the three buttons will cause a different response. The dialog function
will perform a different function based on the response from the dialog
box. Also included in this example are the menus and accelerator tables
discussed in Chapter 5. We will use the menu selections to call the dialog
boxes.

Here is a resource file created using the dialog editor and containing
three pushbuttous named Red, Green, and Cancel:

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Three Buttons", DLG1, 73, 5,148, 84,
WS_VISIBLE, FCF_SYSMENU I FCF TITLEBAR

BEGIN
PUSHBUTTON "Red", FIVE,15, 48, 40,14
PUSHBUTTON "Green", SIX, 83, 48, 40,14
PUSHBUTTON "Cancel", SEVEN, 33,12, 71,14

130 0S/22.0 programming
Chapter 6

END

END

If you combine this with the menu and accelerator example from
Chapter 5, you get the resulting complete resource file, which will be used
in the next example. Take a minute and enter the additional lines to your
menu resource file. Name the file DIALOG2.RC.

; Sample menu resource f ile

#include <os2.h>
#include "menu.h"

MENU MENU 1 PRELOAD

BEGIN
SUBMENI "Test", SUBI

BEGIN
MENUITEM "Option 1 \tcTRL+a", ONE
MENUITEM "Option 2 \tcTRL+b", TWO

END

SUBMENU "Sample", SU82
BEGIN

MENUITEM "Option 1 \tALT+a", THREE
MENUITEM "Option 2 \tALT+b", FOUR

END

END

; Def ine menu accelerators
ACCELTABLE MENUI PRELOAD
BEGIN

"a", ONE, CONTROL
"b", TWO, CONTROL

"a", THREE, ALT
"b", FOUR, ALT

END

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Three Buttons",100, 73, 5,148, 84,
WS_VISIBLE, FCF_SYSMENU I FCF_TITLEBAR

BEGIN
PUSHBUTTON
PUSHBUTTON

PUSHBUTTON

"Red", FIVE,15, 48, 40,14
"Green", SIX, 83, 48, 40,14
"Cancel", SEVEN, 33,12, 71,14

DialogBoxes 131
Chapter 6

END

END

You will also need to add these additional lines to the MENU.H header
file:

#def ine DLG1 100
#def ine FIVE 105
#def ine SIX 106
#def ine SEVEN 107

Each time a control window button within the dialog box is pressed,
a WM_COMMAND message is sent to dialog_func(), and the ID of the
selected control button is placed in p¢,r7771.

The dialog procedure, dialog_func(), processes the three messages
that can be generated by the controls inside the dialog box. If the user
pressesCancel,thenthedialogboxwillbeclosedbyusingacalltotheAPI
functionwinDismissDlg().Pressingeitheroftheothertwobuttonscauses
a message box to be displayed that confirms the selection.

FIGURE 612

Sample output from the second dialog box program

132 0S/22.0 programming
Chapter 6

THE SECOND DIALOG BOX SAMPLE PROGHAM
Here is the entire dialog box example that contains three buttons.

When the program begins execution, only the top-level menu is displayed
on the menu bar. By selecting Option 1 or Option 2 under the Test or
Sample menus, the user causes the dialog box to be displayed. Once the
dialog box is displayed, selecting a pushbutton causes a message box to
be displayed that echoes the appropriate response. Type this program into
your computer and call it DIALOG2.C. Again, you can compile this
example using the same method described earlier in this chapter and in
Chapter 5. A sample screen is shown in Figure 6-2.

/* a second dialog box example */

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#include "menu.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ,.
MRESULT EXPENTRY dialog_func (HWND, ULONG, MPARAM, MPARAM) ,.

char class[] = "Myclass";

main ()
(

HAB hand_ab,. /* anchor block */
HMQ hand_mq,. /* message queue */
HWND hand_frame; /* frame */
QMSG cLmess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass",. /* class name */

/* define the frame contents */
f lFlags = FCF_MENU I /*

FCF_ACCELTABLE I /*
FCF TITLEBAR I /*
FCF SIZEBORDER I /*

FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*

use a resource menu */
use an accelerator table */
have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */

DialogBoxes 133
Chapter 6

FCF_HORZSCROLL I /* horizontal scroll bar */
FCF_SHELLPOSITION; /* default size and location */

hand_ab = Winlnitialize(0); /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Second Dialog Box",
WS_VISIBLE, /* client style */
0, /* resource modules */
MENU1, /* resource identifier */
NULL) ; /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &cLmess) ;

/* shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* this is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {
case WM CREATE:

/* perform any necessary initializations here */

134 0S/22.0 programming
Chapter 6

break;

case WM COMMAND:

switch(SHORTIFROMMP(parml)) {

case ONE:
WinDlgBox (HWND_DESKTOP, handle,

dialog_func, 0, DLG1, 0); break;

case TWO:
WinDlgBox (HWND_DESKTOP, handle,

dialog_func, 0, DLG1, 0); break;

case THREE:
WinDlgBox (HWND_DESKTOP, handle,

dialog_func, 0, DLG1, 0); break;

case FOUR:
WinDlgBox (HWND_DESKTOP, handle,

dialog_func, 0, DLG1, 0); break;
)
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)
return (MRESULT) 0;

)

/* this is the dialog procedure */
MRESULT EXPENTRY dialog_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {
case WM COMMAND:

switch (SHORTIFROMMP(parml)) {

case FIVE:
WinDismissDlg(handle, FIVE) ;
return (MRESULT) TRUE,.

DialogBoxes 135
Chapter 6

case SIX:
WinMessageBox (HWND_DESKTOP, handle,

"You Picked Red", "RED", 0, MB_OK);

return (MRESULT) TRUE;

case SEVEN:
WinMessageBox (HWND_DESKTOP, handle,

"You Picked Green", "GREEN", 0, MB_OK) ;

return (MRESULT) TRUE;

)

clef ault :
return WinDefDlgproc(handle, mess, parml, parm2) ;

)

return (MRESULT) 0;
)

Also notice that the accelerator keys are active. Pressing any of the
acceleratorkeysequenceswillcausethedialogboxtopopupimmediately.
Remember that the accelerator key sequences are CTRL+A, CTRL+B, ALT+A,
and ALT+B.

The next chapter covers many of the window controls available
through dialog boxes. It may be useful to take a few minutes and look over
the dialog editor and the many menus inside it. This will give you a good
idea of things to come in the next chapter. Building the dialog box can be
fun when using the dialog editor. As you will soon see, setting up the
dialogboxesandrespondingtoallthemessagesgeneratedbythedifferent
dialog boxes can be a little complex.

A NOTE ABOUT USING THE DIALOG EDITOP

The dialog editor, a tool provided with the IBM Workset/2 Toolkit, is
the Presentation Manager-based program IBM supplies to help you easily
create dialog resource files. Although the dialog editor is easy to use
because it is intuitive, there are a few points about it that you must
understand.

First, when saving a resource file from the dialog editor, the default
extension is .DLG. This is not the default extension used by the resource

136 0S/22.Oprogramming
Chapter 6

compiler. So when using output generated by the default editor, you must
either copy the .DLG file to a file with an .RC extension or give the full
filename, including the .DLG extension, when invoking the resource com-
piler. By default, the dialog editor saves a compiled version of your .RC
file (which is what you need to link to your Presentation Manager appli-
cation). To use this file, skip the resource compilation step and, on the
command line, simply specify the .RES file to the resource compiler. If your
program already exists in a .EXE form, the updated resources canbe added
to it without recompiling.

Second, in order to create or update the .RES file, you must explicitly
save your project before leaving the dialog editor. To do so, select File and
then Save. If you don't do this, no changes will be made to the .RES or .DLG
files on disk.

Third, once you have saved the compiled .RES and .DLG files, you
must return to the command line to recombine your executable and .RES
files before the changes will affect your executable program. Use RC.EXE
to bind your .RES file created by the dialog editor to your application. If
you are using the files straight out of the dialog editor without further
modifications, just use the .RES file the dialog editor created for you.

You can use the first example program in this chapter to display just
about any of the dialog boxes created with the dialog editor. Of course, the
buttons and gadgets will not do anything, but it is interesting to see how
easy it is to build and display the various dialog boxes. To try this, simply
recombine the .RES file produced by the dialog editor with the program
MYDIALOG.EXE; then run it and see what you get.

CHAPTER

EONTPOLWINDOWS

There are so many different co7i£7'oJ zuz.7idows available in the OS/2
Presentation Manager that their investigation deserves its own
chapter. This chapter examines different control windows and
demonstrates the use of a few of them inside dialog boxes. Even
thoughcontrolwindowsaredemoustratediusidedialogboxes,this
does not imply that this is the only place window controls are used.
Window controls can be used in any window by specifying the
control in the frame control flags in the Wincreatestdwindow()
function. Or you can create control windows separately by calling
theWincreatewindow()function.hfact,manystandardwindows
you have seen already in this book have controls, such as the scroll
bar window control.

There is one thing about controls that is important to understand:
eachcontrolisinawindowofitsown(thusthetermcontrolwindow).
But since the control windows themselves appear inside a window
(suchasthedialogboxinthischapter),itappearstotheuserasifthere
are groups of controls in a single window. Although this distinction is
not very important in practice, it is important to understand this
difference when reading documentation on the subject.

In this chapter, the terms control and control window are used
interchangeably.

"tti,,,,,,,,,,I,,,,",,,I,,,,,,:,:,,i,,,,,,,,,,,,,,,

~?- ``:o!`

138 0S/2 2.0 pr`ogramming
Chapter 7

CONTROL TYPES

The Presentation Manager supports many different styles of controls.
Some of the more exciting and useful ones are buttons, list boxes, entry
fields, combination boxes, spin buttons, notebooks, containers, value sets,
and sliders. Each are briefly described here.

Buttons Pushbuttous, radio buttons, check boxes, and three state but-
tons all belong to the class of buttons. A button is a control that the user
pushes @y cHcking the mouse or tabbing to and then pressing ENTER) to
activate some response. You have already been using pushbuttous in
message boxes. For example, the OK button that we have been using in
most message boxes is a pushbutton. There can be one or `more push-
buttous in a dialog box. A check box contains one or more buttons that are
either checked or not checked. If the item is checked, it means that it is
selected. h a check box, more than one item may be selected. A radio
button is essentially a check box in which one and only one item may be
selected. The three state button is also similar to the check box, but the
button can be in one of three states.

List Boxes Ahstbox displays a list of items from which the user selects
one (or more). List boxes are commonly used to display things such as lists
of fflenanes.

Entry Fields An entry field allows the user to enter a string. Entry fields
provide all the necessary text editing features required by the user. There-
fore, to input a string, your program simply displays an entry field and
waits until the user has finished typing in the string.

Combination Boxes Acombinationbox is a combinationof a listbox and
an entry field. This type of control is very common. You will see this used
in many applications since it auows the user to either select from a list or
enter a choice by typing it in.

Spin Buttons Aspinbuttonpresents the user with another way to make
achoice.Theuserflipsthroughalistofchoicesandmakesaselection.Cinly
one item is presented at a time, so it is important to group similar data
together in this type of window.

Controlwindows 139
Chapter 7

Notebooks A notebook is a control window used to organize groups of
controls.Thenotebooklooksjustasthenameimplies,likeanotebook.The
user can "turn" the pages, or windows, of the notebook to different pages
containing different controls.

Containers A container control is designed to hold objects. This window
supports drag and drop operations so the objects in this type of window
can be manipulated.

Valuesets A value set lets you choose among a group of mutuany
exclusive choices, which makes it similar to the radio buttons. The differ-
enceisthiscontrolisvisuallyorientedandoftencontainsamixtureoftext,
numbers, and graphic images.

Sliders Aslider is used to set a value in a variable range. As you can
guess, this control acts much like a scroll bar (which is also a window
control), but its purpose is completely different. A sHder is designed to set
values whether or not they are inside the client area. The scroll bar is used
to scroll text in a window.

A SAMPLE PROGRAM SHELL
The purpose of this chapter is to examine the different control win-

dows available in the Presentation Manager. To fully implement a control,
a custom dialog procedure must be written for each dialog box. Most of
the control examples in this chapter will include an example resource ffle,
but not all discussions will develop an example program. In order to try
out the different dialog boxes, a generic dialog box driver can be designed
toworkwithalltheexampledialogresourcefilespresentedinthischapter.
Developing and reusing a single example driver will auow you to concen-
trate on the function and design of the dialog boxes.

Please note that the example program shown here is designed to
display any dialog, but is not designed to respond to any special messages
generatedbythedifferentdialogboxes,excepttoclosethedialogboxupon
anycommand.Theeventsgeneratedbythedifferentcontrolwindowswfll
simply be passed to the default dialog message handler.

This example driver win activate the dialog box of the resource file
currentlylinkedinanytimetheleftmousebuttonispressedinthesample
program window.

140 0S/22.0 programming
Chapter 7

/* A dialog box display skeleton. */
#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#include "dialog.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;
MRESULT EXPENTRY dialog_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* Anchor Block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* Frame */
QMSG q_mess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*

FCF MINMAX I /*

FCF SYSMENU I /*

FCF VERTSCROLL I /*

FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* Get the Anchor Block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand frame = Wincreatestdwindow(

Controlwindows 141
Chapter 7

HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Dialog Box Test",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg(hand_ab, &q_mess) ;

/* Shut down the application window and queue */
WinDest roywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

switch(mess) {

case WM BUTTONIDOWN: /* left mouse button */
WinDlgBox(ITh7ND_DESKTOP, handle, dialog_func, 0, DLG1, 0) ;
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

/* This is a skeleton dialog procedure */
MRESULT EXPENTRY dialog._func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

142 0S/22.0 programming
Chapter 7

switch(mess) {

clef ault :
return WinDefDlgproc(handle, mess, parml, parm2) ;

)

return (MRESULT) 0;
)

The header file DIALOG.H needs to define the resource identifier
constants. The following header file will work for all the examples pre-
sented in this chapter. Enter it at this time:

/* sample header file to define resource
identifier macro defined constants */

#define DLG1 100
#define ONE 101
#define TWO 102
#def ine THREE 103
#define FOUR 104
#define FIVE 105
#define SIX 106
#def ine SEVEN 107
#define EIGHT 108
#define NINE 109

Notice the value 100 used in this header file. It is the default value
assigned by the dialog editor to the first resource defined. When building
dialogs to be used with the simple example shell presented here, either use
the default values automatically assigned by the dialog editor or assign
the value of 100 to the dialog identifier name. Doing this will allow this
example shell to display any dialog box. All the numbers used for resource
identifiers are arbitrary, and the actual constant values could be used in
their place. It is just good programming practice to define constant values
in this manner. It prevents simple mistakes and creates programs that are
more easily read and maintained.

ADDING CONTPOL WINDOWS
For each example presented in the following sections, a description of

the control window is given along with the text of the resource file

Controlwindows 143
Chapter 7

generatedbythedialogeditor.Someofthediscussionsincludeanexample
program.Forthediscussiousthatdonotsupplyexamples,thebasicprogram
dialog skeleton can be used to display the sample dialog presented.

BUTTONS

One of the basic buttons, the pushbutton, is used in Chapter 6 to
illustrate the use of dialog boxes. All the buttons supplied in the Presenta-
tion Manager serve a purpose, and you will no doubt eventually use all of
them for one purpose or another.

Pushbuttous, which you have already seen, have but one message to
send to an application; that is, the button was pushed. Radio buttons are
similar, but these buttons are grouped so that they are mutually exclusive;
that is, only one can be selected. Check boxes are either on or off, and three
state buttons have a third state indicated by shadowing. An example of
how a pushbutton works was given in Chapter 6. Here is a resource file
that defines some radio buttons, some check boxes, and some three state
buttons. Enter this resource and link it to the example dialog skeleton
presented earlier in this chapter:

; Sample button box resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Radio and Three State Buttons", DLG1, 23, 42, 238, 51,
WS_VISIBLE, FCF_SYSMENU I FCF TITLEBAR

BEGIN
AUTORADIOBUTTON "Radiol", ONE, 7, 34, 47,10, WS_TABSTOP
AUTORADIOBUTTON "Radio2", TWO, 7, 24, 49,10, WS_TABSTOP
AUTORADIOBUTTON "Radio3", THREE, 7,14, 44,10, WS_TABSTOP
CONTROL "3-Statel", FIVE,167, 33, 52,10,

WC_BUTTON,
BS_AUT03STATE I WS_TABSTOP I WS_VISIBLE

CONTROL "3-State2", SIX,167, 23, 54,10,
WC_BUTTON,
BS_AUT03STATE I WS_TABSTOP I WS_VISIBLE

144 0S/22.0 programming
Chapter 7

CONTROL

AUTOCHECKBOX

AUTOCHECKBOX
AUTOCHECKBOX

"3-State3", SEVEN,167,12, 48,10,

WC_BUTTON,
BS_AUT03STATE I WS_TABSTOP I WS_VISIBLE
"Checkl", FOUR, 81, 33, 47,10
"Check2", EIGHT, 81, 23, 55,10
"Check3", NINE, 81,13, 58,10

END
END

AssumingyoucallthisresourceffleBUTTONS.RCandyounamedthe
dialog display skeleton program DIALac.C, the following resource com-
piler command will create an executable program called DIALOG.EXE:

RC BUTTONS.RC DIALOG.EXE

When you run the program you will see that all the controls respond
when you use the mouse to select or check the box. Of course, as stated
earlier, the example dialog function will ignore all the button settings.

LIST BOXES

A list box displays a list of items from which the user selects one (or
more). List boxes are commonly used to display things such as filenames.
Togivetheuseralistofchoices,listboxesmustbeinitializedtothedesired
list of items.

RESPONDING TO A LIST BOX
To respond to list box events requires some additions to the example

skeleton dialog program. When using a list box, you must perform two
basicoperations.First,youmustinitializethelistboxbeforethedialogbox
is first displayed. This consists of sending the list box the list that it will
display. (By default, the list box will be empty.) Second, once the hst box
has been initialized, your program will need to respond to the user
selecting an item from the list.

List boxes generate various types of messages. The only one we will
use is LN._ENTER. This message is sent when the user has double-clicked
on an entry in the list or selected it using the keyboard. This message is

Controlwindows 145
Chapter 7

contained in SHORT2FROMMP(parml). Once a selection has been made,
youwillneedtoquerythelistboxtofindoutwhichitemhasbeenselected.

Unlike buttons, a list box is a control that receives messages as well as
generates them. You can send a list box any of 26 different messages.
However, our example only sends these two:

Macro Purpose

LM INSERTITEM Add a string (selection) to the list box
LM_QUERYSELECTION Request the index of the item selected

LM_INSERTITEM is a message that tells the list box to add a specified
stringtothelist.Thatis,thespecifiedstringbecomesanotherselectionwithin
thebox.Youwfllseehowtousethismessageshortly.TheLM_QUERYSELEC-
TION message causes the list box to return the index of the item within the
hst box that the user selects. An list box indexes begin with 0.

To send a message to the list box (or any other control) use the
WinsendDlgltemMsg() API function. Its prototype is shown here:

MRESULT APIENTRY WinsendDlgltemMsg(HWND fe¢7idJe,
ULONG JD,
ULONG JD_Msg,
MPARAMpczr7771,
MPARAM p¢r7772);

WinsendDlgltemMsg()sendsthemessagespecifiedbyJD_Msgtothe
control (within the dialog box) whose ID is specified by JD. The handle of
the dialog box is specified in ha77dJc. Any additional information required
by the message is specified in p¢r7#1 and p¢r7772. The additional informa-
tion, if any, varies from message to message. If there is no additional
information to pass to a control, the pflrffll and the p¢r7772 arguments should
beo.

INITIALIZING A LIST BOX
Since a list box is, by default, empty, you will need to initialize it when

the dialog box that contains it is first displayed. This proves to be quite
simple because each time a dialog box is activated, its window function is
sent a WM_INITDLG message. Therefore, you will need to add this case
to the outer switch statement in the dialog_func().

146 0S/22.0 programming
Chapter 7

case WM INITDLG: /* initialize the list box */
WinlnsertLboxltem(handle, LIT_END, "Apple") ;
WinlnsertLboxltem(handle, LIT END, "Orange") ,.
WinlnsertLboxltem(handle, LIT END, "Pear") ;
WinlnsertLboxltem(handle, LIT_END, "Grape") ;

return (MRESULT)TRUE;

WinlnsertLboxltem() is a macro that, when expanded, calls the
WinsendDlgltemMsg() with the LM_INSERTITEM message. The posi-
tion to add the string is put into p¢r777I, and the string to add is put into
p¢r7772 by the macro. Using the macro provided makes it easy to add strings
to the list box. In this case, each string is added to the list box at the end of
the list, causing the list to be built in the order it is sent. However,
depending upon how you construct the list box, it is possible to have the
items displayed in any order you desire. If the number of items you send
to a list box exceeds what it can display in its window, vertical scroll bars
will be added automatically so the user can select any item.

PROCESSING A SELECTION
After the list box has been initialized, it is ready for use. Each time

the user selects an item in the list box either by double-clicking or by
positioning the highlight using the arrow keys and then pressing ENTER,
a WM_CONTROL message is passed to the dialog box's window func-
tion and the LN_ENTER message is contained in p¢r7771. Therefore, you
must add LN_ENTER to the inner switch statement of the dialog box's
window function.

Onceaselectionhasbeenmade,youdeterminewhichitemwaschosen
by sending the LM_QUERYSELECTION message to the list box. The list
box then returns the index of the item.

The following example demonstrates how to initialize and process a
list box selection. Each time a selection is made, a message box will display
the string associated with the index of the item selected.

First, enter the resource file that defines the list box:

; Sample list box resource f ile

#include <os2.h>
#include "dialog.h"

Controlwindows 147
Chapter 7

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE

BEGIN
DIALOG "List box", DLG1,12, 6,148, 84, WS_VISIBLE,

FCF_SYSMENU I FCF_TITLEBAR
BEGIN

LISTBOX ONE, 27, 25, 91, 40
END

END

Name the resource file LISTBOX.RC.
Notice the list box ID is ONE. This is used as the index to the message

response function that responds to activity inside the list box as shown in
the following program. Enter this program now:

/* A list box example. */
#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>
#include "dialog.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;
MRESULT EXPENTRY dialog_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* Anchor Block */
HMQ hand_mq; /* message queue */
HWND hand_frame,. /* Frame */
QMSG cLmess; /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*
FCF MINMAX I /*

FCF_SYSMENI I /*
FCF_VERTSCROLL I /*
FCF_HORZSCROLL I /*
FCF_SHELLPOSITION,. /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

148 0S/22.0 programming
Chapter 7

hand_ab = Winlnitialize(0); /* Get the Anchor Block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "A List Box Demo",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg(hand_ab, &qLmess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

switch(mess) {

case WM BUTTONIDOWN: /* left mouse button */
WinDlgBox(IH^IN.D_DESKTOP, handle, dialog_func, 0, DLG1, 0) ;
break;

Controlwindows 149
Chapter 7

case WM ERASEBACKGROUND:
return (MRESULT) TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT) 0;
)

/* This is the list box dialog procedure */
MRESULT EXPENTRY dialog_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

APIRET item;
static HWND lbox;
PCHAR fruit[4] = {"Apple", "Orange", "Pear", "Grape"};

switch (mess)
(

case WM_INITDLG: /* initialize the list box */

/* get the list box handle */
lbox = HWNDFROMMP(parml) ;

/* insert strings into list box */
WinlnsertLboxltem(lbox, LIT_END, "Apple") ;
WinlnsertLboxltem(lbox, LIT_END, "Orange") ;

/* You can also use a pointer to the string */
WinlnsertLboxltem(lbox, LIT END, fruit[2]) ;
WinlnsertLboxltem(lbox, LIT_END, fruit[3]) ;

return (MRESULT)TRUE;

case WM CONTROL:

/* get the ID of the control */
switch (SHORTIFROMMP(parml))

(
case ONE: /* ID of the list box */

i f (SHORT2 FROMMP (parml) = =LN_ENTER)

{ /* user double-clicked mouse, or pressed enter */
/* get the index of the selected item */

150 0S/22.0 programming
Chapter 7

item = WinQueryLboxselectedltem(lbox) ;

/* display selected item */
WinMessageBox (HWND_DESKTOP, handle,

fruit [item] ,
"', 0, MB_OK);

return (MRESULT) TRUE;
)

clef ault :
break;

)

clef ault :
return WinDefDlgproc(handle, mess, parml, parm2) ,.

)

return (MRESULT) 0;
)

Assuming you call the program LISTBOX.C, and you named the
resource file LISTBOX.RC, the following commands will build an execut-
able program for you to try:

ICC -B"/PM:PM" LISTBOX.C
RC LISTBOX

When you click the left mouse in the example window, the dialog with
the list box will pop up. Selecting one of the items in the list causes a
message box to appear. The output of this example program is shown in
Figure 7-1.

ENTPY FIELDS

Entryfieldsareparticularlyusefulbecausetheyallowuserstoenterastring
of their own choosing. Before you can use an entry field, you must define one
in your resource file. For this example, enter the following resource file:

Controlwindows 151
Chapter 7

; Sample entry f ield resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Entry Field", DLG1, 85, 8,148, 84, WS_VISIBLE,
FCF SYSMENU I FCF_TITLEBAR

BEGIN
ENTRYFIELD "I, ONE,19, 46, FIVE, 8, ES_MARGIN
LTEXT "Enter Your Name:", TWO,17, 65, 85, 8
PUSHBUTTON "OK", THREE, 49, 7, 40,14

END
END

This version adds a pushbutton called OK that will be used to tell the
program that you are done editing text in the entry field. It also adds the
list box itself. The ID for the list box is TWO. This definition causes a
standardentryfieldtobecreatedthatcontainsthetext"EnterYourName."

FIGURE 7-1

Sample fist Box

152 0S/22.0 programming
Chapter 7

Entry fields recognize many messages and generate several of their
own. However, for the purposes of this example, there is no need for the
program to respond to any messages. As you will see, entry fields perform
theeditingfunctionontheirown.Thereisnoneedforprograminteraction
when text is edited. Your program simply decides when it wants to obtain
the current contents of the entry field.

Take a moment now and compile the example RC file with the stan-
dard dialog box example program. This will allow you to see a standard
entry field in action.

COMBINATION BOXES

A combination box is a combination of a list box and an entry field.
This type of box is very common. You will see this used in many applica-
tions since it allows the user either to select an item from a list or to enter
a choice by typing it in.

Using a combination box is just like using the list box and entry field
examined in the previous two sections. The following is an example
resource file that defines the same functionality presented in the list box
and entry field sections:

; Sample combo box resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Combo Box", DLG1,12, 6,148, 84, WS_VISIBLE,
FCF SYSMENU I FCF TITLEBAR

BEGIN
COMBOBOX "', ONE,1,17,139, 49, WS_GROUP
LTEXT "Enter Your Name:", TWO, 5, 72,110, 8
PUSHBUTTON "OK", THREE, 49, 4, 40,14

END
END

Controlwindows 153
Chapter 7

The advantage of using a combination box over separate list boxes and
entry fields is that the dialog_func() only needs to query one control to get
the user's input. Use the combination box whenever you are looking for one
input selection. Use the separate controls when separate inputs are needed.

SPIN BUTTONS

A spin button can add an interesting twist to the presentation of an
application's data. The same kind of information can be presented as is
found in a list box, but spin buttons are particularly suited for values. The
user can flip through a list of this type and very quickly make selections.

Aspinbutton,likealistbox,alsosendseventsthroughtheWM_CON-
TROL message. The fouowing RC file defines a spin button that can hold
both characters and numeric information:

; Sample spin button resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE

BEGIN
DIALOG "Spin Button", DLG1,12, 6,148, 84, WS_VISIBLE,

FCF SYSMENIJ I FCF TITLEBAR
BEGIN

CONTROL "', ONE, 28, 42, 80,12, WC_SPINBUTTON,
SPBS ALLCHARACTERS I SPBS_MASTER I

SPBS SERVANT I SPBS JUSTDEFAULT I
WS GROUP I WS TABSTOP I WS VISIBLE

END

END

NOTEBOOKS

A notebook is an advanced control that assists the application writer
to organize user input into logical sections. Notebooks can be used to

154 0S/22.0 programming
Chapter 7

classifytypesofinputbycreatingseparatepagesforeachclass.Yousupply
a dialog function for each notebook you define, but each notebook can
containmanypages.Thismakesworkingwithnotebookdialogsveryeasy.

The user can "turn" the pages of the notebook to different windows
containing different controls. This complex control is best used in applica-
tions that apply many controls to a single task. The notebook control can
help the application designer organize a complex set of interdependent
controls into one common dialog box.

Don't overlook this control when designing an application, for it can
be useful in many ways. To see what a notebook looks like, enter the
following resource file and link it into the example dialog skeleton:

; Sample notebook resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "NoteBook", DLG1, 74, -37,148,132, WS_VISIBLE,
FCF SYSMENU I FCF TITLEBAR

BEGIN
CONTROL "The Notebook", ONE, 0,19,148,113,

WC_NOTEBOOK, BKS_BACKPAGESBR I
BKS MAJORTABRIGHT I BKS_SQUARETABS I
BKS STATUSTEXTLEFT I BKS TABTEXTLEFT I

WS GROUP I WS_TABSTOP I WS_VISIBLE
PUSHBUTTON "OK", TWO, 47, 0, 40,14

END

END

CONTAINERS

A container control is designed to organize objects into like groups. You
have seen containers all over the OS/2 Desktop. The folders are containers,
and so are the icon views. This control supports drag and drop operations to
manipulate objects. Items are dragged in and out of containers.

Controlwindows 155
Chapter 7

Containers support the display of bitmaps, icons, and text. The dif-
ferent types of items can be displayed in different ways. Each of these
displays is called a co7i£¢z.7ier zJz.cw. Different types of container views are
available, including an icon view, a name view, a text view, a tree view,
and a details view.

The icon view is the view most often seen in the OS/2 Desktop. This is
aniconwithsometextbelowtheiconthatnamesit.Thenameviewdisplays
thetexttotherightoftheicon.Neithertheiconviewnorthenameviewlimits
the number of lines of text displayed or the number of characters per line.

The text view is similar to the icon and name views, but the icon is not
present in the text view. Instead, the text acts as the object that can be
manipulated. The tree view displays the other views in a treelike organi-
zation. The far left object is the root and is known as the parent. Items to
the right of the parent are called children and are not displayed unless the
parent is selected. Chce a child is displayed, it may also be selected,
displaying even more children. This type of tree display is often used for
graphic representations of disk file structures.

The details view can display multiple fields of information about a
single object, including the icon or bitmap, some text, and other values
associated with the object. A details view might contain column headings,
and the objects can be organized into rows inside the dialog box.

VALUE SETS

A value set lets you choose a visually oriented item. The window of a
value set often contains graphic images and bitmaps.

The most common use of the value set control is the graphic image.
The user "sees" the choice and selects it. A value set may be used to select
the choice of background patterns. In this case, a small sample of each of
the images is displayed and the user can simply select the preferred image
by clicking on it.

Thevaluesetoperatesmuch]iketheradiobutton.Chlyoneofthedisplayed
images can be selected. Value sets are often combined with other controls in a
singledialogbox,makinguserinputsimplerandmoreinteresting.

156 0S/22.0 programming
Chapter 7

SLIDERS

The final control covered in this chapter is the slider. A slider is used
tosetavalueinavariablerange.Theusersetsvaluesbyslidingabaracross
the page. This can be a very intuitive method of setting many values.

A good use of a slider control is to adjust the frequency setting for
sound output, and this is just the type of example developed here for
demonstration purposes. In the following example program, every time
the slider is moved, the current slider setting will be read and used as the
frequency input parameter to the DosBeep() API function.

The resource definition file for a slider control is shown here:

; Sample slider resource f ile

#include <os2.h>
#include "dialog.h"

DLGTEMPLATE DLGI LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Speaker Beeper", DLG1, 56, 8, 209, 84, WS_VISIBLE,
FCF_SYSMENI I FCF_TITLEBAR

BEGIN
CONTROL "', TWO, 3, 22, 206, 9, WC_SLIDER,

SLS HORIZONTAL I SLS_CENTER I
SLS SNAPTOINCREMENT I SLS_RIBBONSTRIP I
SLS HOMELEFT I SLS PRIMARYSCALEl I

WS GROUP I WS TABSTOP I WS VISIBLE

CTLDATA 12, 0, 200, 0, 20, 0
CTEXT "Frequency", FIVE, 65, 43, 60, 8, DT_VCENTER

END
END

A WM_CONTROL message is generated every time the slider value
changes. The SLN_SLIDERTRACK notification code, stored in the mes-
sage parameter p¢r77tl, is sent even if the mouse button is never released.
This will be used to capture the changes as the user slides the control.
Sliding the control win cause the speaker to sound for each incremental
change in the slider control value. The sample dialog_func() is listed here:

/* A slider control example. */
#def ine INCL WIN
#def ine INCL GPI

Controlwindows 157
Chapter 7

#include <os2.h>
#include "dialog.h"

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ,.
MRESULT EXPENTRY dialog_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass",.

main ()
(

HAB hand_ab; /* Anchor Block */
HMQ hand_mq; /* message queue */
HWND hand_frame,. /* Frame */
QMSG qLmess,. /* message queue */
ULONG flFlags; /* Window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /*

FCF_SIZEBORDER I /*
FCF MINMAX I /*

FCF SYSMENU I /*

FCF_VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* Get the Anchor Block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this
hand_ab ,
(PSZ) class,
(PFNWP) window_func,
CS_SIZEREDRAW,
0))

class
block

name */
function */
style */

no storage */
exit (1) ;

hand_frame = Wincreatestdwindow (
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions

158 0S/2 2.0 programming
Chapter 7

(PSZ)class, /* client class */
(PSZ) "Slider Control Demo",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &|mess) ,.

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ,.
WinTerminate (hand_ab) ;

)

/* This is the window function. */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

switch(mess) {

case WM BUTTONIDOWN: /* left mouse button */
WinDlgBox(IIWND_DESKTOP, handle, dialog_func, 0, DLG1, 0) ;
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

clef ault :
return WinDefwindowproc(handle, mess, parml, parm2) ;

)

return (MRESULT)0;
)

/* This is the slider dialog procedure */
MRESULT EXPENTRY dialog_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(
ULONG freq;
static HWND lbox;

Controlwindows 159
Chapter 7

switch (mess)
(

case WM_INITDLG: /* initialize the slider */
/* get the slider handle */
lbox = HWNDFROMMP(parml) ;

return (MRESULT)TRUE,.

case WM CONTROL:

/* check for the slider drag message. */
i f (SHORT2 FROMMP (parml) = =SLN_SLIDERTRACK)

{ /* user is moving the slider, get the new value */
freq = (ULONG) WinsendMsg(lbox, SLM_QUERYSLIDERINFO,

MPFROM2 S HORT (SRA_S L I DERARMPO S I T I ON ,

SRA_INCREMENTVALUE) ,
NULL) ;

DosBeep(freq, 75);
return (MRESULT)TRUE;

)
clef ault :

return WinDefDlgproc(handle, mess, parml, parm2) ,.
)

return (MRESULT)0;
)

You will notice as you try this sample program that a trombone effect
can be obtained by beeping the speaker while the slider is being moved.
To beep the speaker only once when the mouse is released, the
SLN_CHANGE notification code should be used in place of the
SLN_SLIDERTRACKnotificationcode.Givethisatrynowtoseetheeffect
of changing this one message. The output from the slider control example
is shown in Figure 7-2.

CONCLUDING THOUGHTS

While the chapters in this section introduce you to Presentation Man-
ager programming and provide a "quick start" to its essential principles,
they only scratch the surface of Presentation Manager programnring. If

160 0S/2 2.0 programming
Chapter 7

FIGURE 7-2

Sample Slider Control

you want to become an excellent Presentation Manager programmer, you
will need to acquire several books on the topic and write a number of
programs. Taking a fun year to become familiar with all aspects of Presen-
tation Manager programming is not uncommon. However, just be persis-
tent. Your efforts will be rewarded.

CHAPT

ICONSANDGPAPHICS

This chapter explains how to control the appearance of two import-
ant items hinked with au Presentation Manager applications: the
design of the icon that is displayed when an application is mini-
mized and the shape of the mouse pointer. The chapter finishes off
with a discussion of the graphics functions available in the Presen-
tation Manager. An example program is developed to demonstrate
the drawing capabilities in the Presentation Manager.

USING SYSTEM DEFINED ICONS AND MOUSE POINTERS

The first section of this chapter will explain how to use the set
of predefined system icons and mouse pointers. To use your own
definition of one of these graphic images you must use the icon
editor contained in the IBM Workset/2 Toolkit. The user-defined
icons and mouse pointers can be loaded into the application
through the apphication's resource definition ffle. Cince loaded, the
custom mouse pointer can be used the same way the predefined
system icons and mouse pointers are used. The second section in

162 0S/2 2.0 programming
Chapter 8

thischapterdemonstrateshowthesecustomiconsandmousepointersare
developed and used in an apphcation program.

A mouse pointer is nothing more than a special icon, and both the
pointer and icon are simply bitmaps. The mouse pointer has a special
location defined in its bitmap called a feof spot . The hot spot is the exact
location the mouse is pointing to, such as the tip of the default mouse
pointer. OS/2 keeps track of the screen coordinates of this mouse pointer
hot spot, and sends them to the appropriate window as it travels around
the screen.

CHANGING THE DEFAULT ICON
Althoughmaskedbyos/2,allpresentationManagerapplicatiousfirst

create a window class, which defines the attributes of the window, includ-
ing the shape of the application's icon and mouse pointer. This window
class is then registered with the Presentation Manager. Cinly after these
steps have been performed can you actually create a window. In the
process, default icon and mouse pointer shapes are defined. Since the
shapes of the icon and mouse pointer are defined when a window class is
created, you must actively intervene in the window class creation process
to alter these items.

Before developing a complete program to demonstrate changing the
minimized icon and the mouse pointer, it is necessary to discuss the
operation of the various API functions used to manipulate icons and
mouse pointers.

To change the default icon to another system defined icon, a message
needs to be sent after the window is created. The message to send,
WM_SETICON, is sent by the WinsendMsg() API function. Its prototype
is shown here:

WinsendMsg(IIWND fe¢#dJ'¢77zc, ULONG "sg,
MPARAM p¢r7#I , MPARAM p¢r77t2);

The fe¢7tdJi#77zc parameter is the frame handle for the window. This is
thereturnvaluefromthecalltotheAplfunctionwincreatestdwindow().
The second parameter is the message to send, and the message being sent
determines the final two parameters, p¢r77tl and p¢r77t2. In this case, p¢r77tl
will hold the pointer to the new icon, and pflr7772 will be 0. To obtain the
value for p¢r7771, the function WinQuerysyspointer() must be called to get
the system pointer for the desired icon. The prototype is as follows:

Icons andGraphics 163
Chapter 8

HPOINTER APIENTRY WinQuerysyspointer(HWND ho7idJc,
LONG pf r,
BOOL Jo¢d);

Theha7tdJcparameteristhehandietotheparentwindow.Forexamples
in this book, this parameter will be set to HWND_DESKTOP. The desired
system pointer value (the icon pointer) is placed into pf r. The parameter
Zo¢d, if set to TRUE, tells the system to make a copy of the current pointer
before returning the handle. This is used if the application is going to
modify the bitmap of the current pointer.

Table 8-1 hsts the system defined icons normally used for minimized
applications. Actually, you can also use any of the system pointers listed
in Table 8-2 since the Presentation Manager does not distinguish between
mouse system pointers and icon system pointers.

The best location to change the icon is directly following the
Wincreatestdwin() can. The following code fragment shows how the
icon can be changed to the SPTR_ICONQUESTION system defined icon.

hand frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Icon and Mouse Pointer Test",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* get the system pointer to the desired icon */
icon = WinQuerysyspointer (HWND_DESKTOP,

SPTR_ICONQUESTION,
FALSE) ;

/* set the icon to the desired system pointer */
WinsendMsg(hand_frame, WM_SETICON, (MPARAM) icon, (MPARAM) 0) ;

This fragment will be used in the next sample program following the
next section.

164 0S/22.0 programming
Chapter 8

Macro

SPTR APPICON
SPTR FILE

SPTR ICONEREOR
SPTR ILLEGAL

SPTR ICONWARNING
SPTR NILTFILE
SPTR FOLDER
SPTR PROGRAM
SPTR ICONINFORMATION
SPTR_ICONQUESTION

TABLE 8-1

Icon Description

Default application icon
Single file icon
Exclamation point
Used to indicate something illegal
Warning icon
Multiple file icon
Icon to represent a folder
Executable program icon
Information icon

Question mark

System Defined Icons

Macro

SFTR ARROW
SPTR TEXT

SPTR WAIT
SPTR SIZEWE
SPTR SIZENS
SPTR SIZENWSE

SPTR SIZENESW

SPTR SIZE

SPTR MOVE

TABLE 8-2

Pointer Description

Default arrow pointer
I-beam pointer
Clock
Horizontal double-headed arrow
Vertical double-headed arrow
Double-headed arrow pointing northwest and
southeast
Double-headed arrow pointing northeast and
southwest
Pointer used during sizing
Pointer used while dragging

System Defined Pointers

IconsandGraphics 165
Chapter 8

CHANGING THE DEFAULT MOUSE POINTEPI
Changing the default mouse pointer is very similar to changing the

default icon. To change the mouse pointer from the default shape, you will
first need to get the handle of the desired pointer shape using the API
function WinQuerysyspointer(). The prototype for this function was
shown in the previous section, but is repeated here for completeness:

HPOINTER APIENTRY WinQuerysyspointer(HWND ho 7idJc,
LONG pf r,
BOOL Jofld);

The ha#dJc parameter is the handle to the parent window which will
besettoIIWND_DESKTOPforaHexamplesusedhere.Thesystempointer
value (mouse pointer) is placed into pfr. The parameter Zofld, if set to TRUE,
tells the system to make a copy of the current pointer before returning the
handle. A list of most of the common system pointers used for mouse
pointers is given in Table 8-2. You can also use any of the system icons
listed in Table 8-1 since the Presentation Manager does not distinguish
between icon system pointers and mouse system pointers.

Cince you have a handle to the desired mouse pointer, you set the
current mouse pointer with a call to Winsetpointer(). The prototype for
this function looks like this:

BOOL APIENIRY Winsetpointer (I-IWND fe¢7idJe,
HPOINTER 7iezujfr);

Here,he7idzcistheparentwindowhandle,HWND_DESKTOP,and7iczt7+7£r
isthehandleforthenewmousepointer.Thisvalueistheretumvaluefrom
the API function WinQuerysyspointer() that you used to get the handle
to the mouse pointer.

It is often necessary for the application program to save the current
mousepointerbeforeinstallinganewpointer.Thisissotheoriginalmouse
pointer can be restored. The API function WinQuerypointer() is used to
retrieve the handle to the current mouse pointer. The prototype for this
function is shown here:

HPOINTER APIENTRY WinQuerypointer(IIWND 7I¢7idJe);

The interesting part of this function call is the return value. This is
where you will find the handle to the current mouse pointer.

166 0S/22.0 programming
Chapter 8

DISPLAYING THE ICON AND MOUSE POINTEP
The following program uses the functions described in the previous

two sections of this chapter to change the default icon to a question mark.
The program also changes the mouse pointer into a clock shape whenever
the right mouse button is pressed. When the left mouse button is pressed,
the mouse pointer is restored to its original shape.

/* An example of switching icons and mouse pointers */

#def ine INCL WIN

#include <os2.h>

MRESULT EXPENTRY window_func (HWND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame; /* frame */
QMSG QLmess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
f lFlags = FCF_TITLEBAR I /*

FCF SIZEBORDER I /*
FCF MINMAX I /*
FCF SYSMENU I /*

FCF VERTSCROLL I /*
FCF HORZSCROLL I /*

FCF_SHELLPOSITION; /*

have a title bar */
be a sizeable window */
have min and max buttons */
include a system menu */
vertical scroll bar */
horizontal scroll bar */
default size and location */

hand_ab = Winlnitialize(0); /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */

IconsandGraphics 167
Chapter 8

CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Icon and Mouse Pointer Test",
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* get the system pointer to the desired icon */
icon = WinQuerysyspointer (HWND_DESKTOP,

SPTR_ICONQUESTION,
FALSE) ;

/* set the icon to the desired system pointer */
WinsendMsg(hand_frame, WM_SETICON, (MPARAM) icon, NULL) ,.

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &qLmess) ;

/* shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ,.
WinTerminate (hand_ab) ;

)

/* this is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(
HPOINTER newpointer,.
static HPOINTER oldLpointer;
static HPOINTER currpointer;

switch(mess) {

case WM CREATE:

168 0S/2 2.0 programming
Chapter 8

/* save the original mouse pointer on creation */
/* if no original pointer, use the default */
oldpointer = WinQuerypointer (HWND_DESKTOP) ;
if (old_pointer == NULLHANDLE)

old_pointer = WinQuerysyspointer (HWND_DESKTOP,
S PTR_ARROW ,
FALSE) ;

/* set the current pointer to the original */
curr_pointer = old_pointer;

break;

case WM_BUTTON2DOWN: /* process right button */

/* get the handle of the new pointer */
newjointer = WinQuerysyspointer (HWND_DESKTOP,

SPTR_WAIT,
FALSE) ;

/* set the mouse pointer to the new shape */
Winsetpointer (HWND_DESKTOP, newunointer) ;
curr_pointer = new_pointer;
break;

case WM_BUTTONIDOWN: /* process left button */
/* set the mouse pointer back to the original shape */
Winsetpointer (HWND_DESKTOP, oldpointer) ,.
curr_pointer = old_pointer;
break;

case WM MOUSEMOVE:

/* when the mouse moves, the system will restore the
original mouse pointer. Set the mouse pointer
and return TRUE to prevent the system from
reacting to the mouse move */

Winsetpointer (HWND_DESKTOP, currunointer) ;
return (MRESULT)TRUE;

case WM ERASEBACKGROUND:
return (MRESULT) TRUE,.

clef ault :

IconsandGraphics 169
Chapter 8

return WinDefwindowproc (handle, mess, parml, parm2) ;
)

return (MRESULT) 0;
)

Notice that the program processes the WM_MOUSEMOVE message.
This is done to preserve the current mouse pointer during movement. If
the mouse leaves the focus of the example window, the example program
nolongerprovidesthemousepointershape.Assoonasthemouseretums
to the focus of the example program, the current mouse pointer of the
example program is again displayed. If the WM_MOUSEMOVE message
werepassedontothedefaultwindowmessagehandler,thesystemwould
restore the default mouse pointer every time the mouse was moved.

The output of the example program is shown in Figure 8-1. Notice the
icon in the upper left-hand corner. It's a question mark. Also notice the
mouse pointer is now a picture of a clock.

Take a few minutes and try some of the different icons and mouse
pointers. To try other icons, replace the macro in the call to
WinQuerysyspointer() in the main() function with other system icons

FIGURE 8-1

Sample Output Using a Standard System Icon and Pointer

170 0S/22.Oprogramming
____ _ _ ___

Chapter 8

listed in Table 8-1. To try other mouse pointers, replace the macro in the
call to WinQuerysyspointer() inside the window_func() procedure with
other system pointers listed in Table 8-2.

USING CUSTOM ICONS AND MOUSE POINTERS

Before continuing with the following examples, you must create a
pointer resource. As with other graphical resources, the best way to create
your own pointer is to use the IBM Workset/2 icon editor.

CREATING THE ICON AND MOUSE POINTER
Takeaminutenowandcreateyourowniconandamousepointer.The

icon editor is quite intuitive to use. If you encounter problems, refer to the
extensive online documentation or the manuals suppHed with the Toolkit.
When you save the files, name them MYICON.ICO and MYMOUSE.PTR
respectively, so they can be used by the sample program without any
changes to the code presented in this section. Figure 8-2 shows the icon
editor with the sample icon used in the sample program in this section.

Cince you have created the icon and mouse pointer, you will need to
include them in your apphcation's resource file. The following lines will
define the icon and mouse pointer, making them available to the applica-
tion program:

#include "icon.h"
POINTER MYMOUSE MYMOUSE. PTR

ICON MYICON MYICON.ICO

The header file ICON.H should contain the following hnes:

#def ine MYMOUSE 111
#def ine MYICON 222

To use the icon defined in a resource file, simply add the FCF_ICON
macro to the flFlags variable in the example program. This variable holds
the window creation flags in the main() function. Next, include the ID
number in the call to Wincreatestdwindow() in the resource identifier
field. The Presentation Manager takes care of the rest of the work.

IconsandGraphics 171
Chapter 8

FIGURE 8-2

Icon Editor Screen

To use the mouse pointer you have defined in the resource file takes a
bit more work, but once you have done the work, you may display the
pointer whenever you want. Using a custom mouse pointer is similar to
using a system default mouse pointer, except the custom mouse pointer
must first be loaded through a call to WinLoadpointer(). This function
will retrieve the system handle for the custom mouse pointer much the
same way the function WinQuerysyspointer() retrieved the handles for
the system defined pointers and icons. The prototype for this function is
given here:

HPOINTER APIENTRY WinLoadpointer(HWND fe¢7idJe,
"ODULE 771od,
ULONG £.d);

Again, the fefl77dJc parameter is set to HWND_DESKTOP, the parent
window. The parameter 77zod is the module name of the bit image. Usually
this is set to 0 because the bit images are linked into the executable file by
the resource compiler. Here, €.d is the unique ID number assigned to the
pointer in the resource file.

172 0S/22.0 programming
Chapter 8

DISPLAYING THE CUSTOM ICON AND MOUSE POINTER
The following program uses the icon and mouse pointer you created.

Likethepreviousexampleprogram,themousepointerchangesintoyour
custom designed mouse pointer whenever the right mouse button is
pressed. When the left mouse button is pressed, the mouse pointer is
restored to its original shape. The custom icon you designed is displayed
in the upper left-hand comer of the window, but to get a good look at it,
minimizethewindow.Figure8-3showssampleoutputfromthisprogram.

/* An example of a custom icon mouse pointer */

#def ine INCL WIN

#include <os2.h>
#include "icon.h"

MRESULT EXPENTRY window_func (HV\IN.D, ULONG, MPARAM, MPARAM) ,.

char class[] = "Myclass",.

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq; /* message queue */
HWND hand_frame,. /* frame */
QMSG q_mess,. /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass",. /* class name */
HPOINTER icon; /* the new icon system pointer */

/* define the frame contents */
flFlags = FCF_ICON I /* use the indicated icon */

FCF_TITLEBAR I /* have a title bar */
FCF SIZEBORDER I /* be a sizeable window */
FCF_MINMAX I /* have min and max buttons*/

FCF_SYSMENU I /* include a system menu */
FCF_VERTSCROLL I /* vertical scroll bar */
FCF_HORZSCROLL I /* horizontal scroll bar */
FCF_SHELLPOSITION; /* default size and location*/

hand_ab = Winlnitialize(0); /* get the anchor block */

IconsandGraphics 173
Chapter 8

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue*/

if (!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function*/

CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type */
WS_VISIBLE, /* frame style */
&flFlags, /* definitions */
(PSZ)class, /* client class */
(PSZ) "Custom Icon and Mouse Pointer",
WS_VISIBLE, /* client style */
0, /* resource modules */
MYICON, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &qLmess, 0, 0, 0))

WinDispatchMsg(hand_ab, &|mess) ;

/* shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)
(

HPOINTER newunointer;
static HPOINTER old_pointer;
static HPOINTER currpointer;

switch(mess) {

case WM CREATE:

174 0S/2 2.0 programming
Chapter 8

/* save the original mouse pointer on creation */
/* if no original pointer, use the default */
oldpointer = WinQuerypointer (HWND_DESKTOP) ;
if (old_pointer == NULLHANDLE)

old_pointer = WinQuerysyspointer (HWND_DESKTOP,
SPTR_ARROW,
FALSE) ;

/* set the current pointer to the original */
curr_pointer = old_pointer;

break;

case WM_BUTTON2DOWN: /* process right button */

/* get the handle of the new pointer */
newLpointer = WinLoadpointer (HWND_DESKTOP,

0,

M"OUSE) ;

/* set the mouse pointer to the new shape */
Winsetpointer (HWND_DESKTOP, newpointer) ;
curr_pointer = new_pointer;
break;

case WM_BUTTONIDOWN: /* process left button */
/* set the mouse pointer back to the original shape */
Winsetpointer (HWND_DESKTOP, oldpointer) ;
curr_pointer = old_pointer;
break;

case WM MOUSEMOVE:

/* when the mouse moves, the system will restore the
original mouse pointer. Set the mouse pointer
and return TRUE to prevent the system from
reacting to the mouse move */

Winsetpointer (HWND_DESKTOP, curr]pointer) ;
return (MRESULT)TRUE;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

Icons andGraphics 175
Chapter 8

clef ault :
return WinDefwindowproc (handle, mess, parml, parm2) ;

)

return (MRESULT)0;

USING GRAPHICS

The creators of OS/21eft the task of graphics display to the Presenta-
tionManager.ItisverydifficulttoimplementgraphicsoutsidethePresen-
tation Manager. This section contains an explanation of how to use
Presentation Manager graphics and an example graphics program.

THE CURRENT POSITION APPROACH TO GRAPHICS
The Presentation Manager maintains a pointer to the currently active

screen location. The Presentation Manager graphics system makes use of

FIGURE 8-3

Sample Output From the Custom Icon and Mouse Pointer Test

176 0S/2 2.0 programming
Chapter 8

this current location to streamline many of its graphics services, such as
those that draw lines and boxes. To understand how, consider first the
more traditional approach to the basic graphics functions.

In a traditional graphics system, the function that draws a hne will be
defined something like this :

drawHne(startx, startY, endx, endY)

Here, both the starting and ending points of the line are specified
explicitly in the function parameters. In general, in the traditional method
allgraphicsfunctiousspecifyboththebeginningandendingpointsofthe
object to be drawn (where apphicable, of course). However, the Presenta-
tion Manager uses a fundamentally different approach based upon the
current position. In this method, the call to the line drawing function
specifies only the endpoints of the line. The start of the hne is the current
position. That is, the line drawing service found in the Presentation Man-
ager draws a line from the current position to the specified endpoint. The
same principle applies to the service that draws a box. You simply call the
box drawing function with the coordinates of the corner opposite the
current position and the box is drawn using the current position and the
specified opposite comer.

The reason that the Presentation Manager uses the current position
approachisspeed.Becauseeachparameterinacalltakestimetopushonto
the stack, the fewer parameters, the faster the can is executed. The most
effective graphics are those that can be displayed very quickly. In many
drawing situations, the next graphics event begins where the last one left
off, making the display of graphical information very fast. Of course, the
Presentation Manager contains a service that allows you to set the current
position explicitly, should the need arise.

The screen coordinates for the graphics subsystem are the same as for
the text routines: the lower left comer is 0,0. The maximum X and Y values
aredeterminedbythesizeofthewindowand,ultimately,bytheresolution
of the screen.

DHAWING LINES AND BOXES
The Presentation Manager supplies several graphics functions. How-

ever, we will explore only three of the most common: Gpisetpel(),
GpiLine(), and GpiBox(). These services draw a point, line, and box,
respectively. Their prototypes are shown here:

IconsandGraphics 177
Chapter 8

LONG APIENTRY Gpisetpel(HPS p_space, POINTL Joc);

LONG APIENTRY GpiLine(HPS p_sp¢ce, POINTL Joc);

LONG APIENTRY GpiBox(HPS p_space, LONG sfyJc, PPOINTL Joc,
TJONG horiz_round, TJONG vert_round).,

Here, p_sp¢cc is the handle of the presentation space being written to. All
functions use the current foreground color to draw the object. For
Gpisetpel(), the structure pointed to by Joc contains the coordinates to the
pel that will be written. The current position is unchanged by this service.

For GpiLine(), the structure pointed to by Zoc contains the endpoint
of the desired line. The start of the line is the current position. After the
call to GpiLine(), the current position is set to the end of the line specified
by JOc.

For GpiBox(), the structure pointed to by Joc is the corner opposite the
current position. Through these two comers a rectangle is drawn. The
value of sfyJc determines whether the box is outlined, filled, or both. The
valid values, along with their macro names, are shown here. The current
position is unchanged by this service.

Macro Name

DRO FILL
DRO OUTLINE
DRO OUTLINEFILL

Meaning

Fill the box
Outline the box
Fin and outline the box

Outlining and fining are done in the current drawing color. If any of
these drawing functions are called using invahd coordinates, an error is
returned.

SETTING THE CUPIRENT POSITION
To explicitly set the current position, use Gpisetcurrentposition(),

whose prototype is shown here:

BOOLAPIENTRYGpisetcurrentposition(HPSp_space,PPOINTUoc);

Here, p_sp¢cc is the handle of the presentation space, and the structure
pointed to by Joc contains the coordinates of the pel to make the current

178 0S/22.0 programming
Chapter 8

position. If you specify an invalid coordinate, the service returns
FALSE/TRUE; it returns TRUE on success.

A SHOHT GRAPHICS DEMO PROGRAM
The following program demonstrates the graphics services just dis-

cussed. The program provides services to draw blue lines and red boxes.
Of course, if you have a black and white monitor, you will only see black
lines and black boxes.

When the left mouse is pressed in the graphics example window, the
current position is recorded. When the button is released, a line is drawn
from the point the button was pressed to the point where the button was
released. The right button will draw the boxes. When the right button is
pressed, the location is recorded. When the button is released, a box is
drawn using the mouse press and mouse release as the positions of the
opposite comers of the box.

/* This program demonstrates some graphics services */

#def ine INCL WIN
#def ine INCL GPI

#include <os2.h>

MRESULT EXPENTRY window_func (HIND, ULONG, MPARAM, MPARAM) ;

char class[] = "Myclass";

main ()
(

HAB hand_ab; /* anchor block */
HMQ hand_mq,. /* message queue */
HWND hand_frame; /* frame */
QMSG |mess; /* message queue */
ULONG flFlags; /* window frame definition */
unsigned char class[] = "Myclass"; /* class name */

/* define the frame contents */
flFlags = FCF_TITLEBAR I /* have a title bar */

FCF_SIZEBORDER I /* be a sizeable window */
FCF_MINMAX I /* have min and max buttons */
FCF SYSMENU I /* include a system menu */
FCF_VERTSCROLL I /* vertical scroll bar */

Icons and Graphics 179
Chapter 8

FCF HORZSCROLL I /* horizontal scroll bar */
FCF_SHELLPOSITION; /* default size and location */

hand_ab = Winlnitialize(0); /* get the anchor block */

hand_mq = WincreateMsgQueue(hand_ab, 0) ; /* start a queue */

if(!WinRegisterclass(/* register this window class */
hand_ab, /* anchor block */
(PSZ) class, /* class name */
(PFNWP) window_func, /* window function */
CS_SIZEREDRAW, /* window style */
0)) /* no storage */

exit (1) ;

hand frame = Wincreatestdwindow(
HWND_DESKTOP, /* window type
WS_VISIBLE, /* frame style
&flFlags, /* definitions
(PSZ)class, /* client class
(PSZ) "Graphics Example" ,
WS_VISIBLE, /* client style */
0, /* resource modules */
0, /* resource identifier */
NULL); /* pointer to client handle */

/* message loop */
while(WinGetMsg(hand_ab, &q_mess, 0, 0, 0))

WinDispatchMsg (hand_ab, &q_mess) ;

/* Shut down the application window and queue */
WinDestroywindow (hand_f rame) ;
WinDestroyMsgQueue (hand_mq) ;
WinTerminate (hand_ab) ;

)

/* This is the window function */
MRESULT EXPENTRY window_func (HWND handle, ULONG mess,

MPARAM parml, MPARAM parm2)

(

static HPS p_space,.
POINTL coords;

switch(mess) {

case WM PAINT:

180 0S/2 2.0 programming
Chapter 8

/* initialize */
p_space = WinBeginpaint(handle, 0, 0) ;
GpisetBackMix (p_space , BM_OVERPAINT) ,.
break;

case WM BUTTONIDOWN:
case WM BUTTON2DOWN:

/* set the current location when either button is
pressed */

coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
Gpisetcurrentposition(p_space, &coords) ;
break;

case WM BUTTONIUP:

/* when button is released, draw the line */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
Gpisetcolor (p_space, CLR_BLUE) ;
GpiLine(p_space, &coords) ;
break;

case WM BUTTON2UP:

/* when button is released, draw a filled box */
coords.x = SHORTIFROMMP(parml) ;
coords.y = SHORT2FROMMP(parml) ;
Gpisetcolor(p_space, CLR_RED) ;
GpiBox(p_space, DRO_FILL, &coords, 0, 0);
break;

case WM ERASEBACKGROUND:
return (MRESULT)TRUE;

case WM CLOSE:

/* end the paint session */
WinEndpaint (handle) ;

clef ault :
return WinDefwindowproc (handle, mess, parml, parm2) ,.

)

IconsandGraphics 181
Chapter 8

return (MRESULT)0;
)

Youmightfinditinterestingtochangethedrawingcolororplaywith
the various graphics functions available in the Presentation Manager.
Figure 8-4 shows sample output from this program.

CONCLUDING THOUGHTS

While the chapters in this section introduce you to OS/2 Presentation
Manager programming and provide a "quick start" to understanding the
essentialprinciples,theyonlyscratchthesurfaceofPresentationManager
programming.TobecomeatrulyeffectivepresentationManagerprogram-
mer, you will need to acquire several books on the topic and write a
number of programs. Although the amount of time and effort required to
learn Presentation Manager programming may be great, be persistent.
ProgramminginthePresentationManagercanbearewardingexperience.

FIGURE 8-4
Sample Output From the Graphics Example

LPLOPINGTHEApl

Inthissection,manyofthecoreAPIservicesarediscussed.Several
of these services exist to help the programmer take full advantage
of the power of OS/2. There are many processes that occur in the
background,outofviewfromtheuser.Theseprocessescanexploit
the power of OS/2. A sohd understanding of the core services is
important for several reasons, not the least of which is to provide
support for such things as interprocess communication and dy-
namic link libraries.

Several example programs are included in the following chap-
ters.ManyoftheseexamplesarewrittenwithoutusingthePresen-
tationManager,soasnottocloudtheissuewithoverheadcode.But
au the concepts discussed in this section apply to Presentation
Manager programs.

CHAPTER

nN iNTRODucTION TO

MULTITASKING

The preceding chapters in this book have introduced you to some
very important OS/2 API services. This chapter introduces you to
OS/2's multitasking capabilities, in which much of OS/2's power
lies.So,ifyouarenewtoamultitaskingenvironment,thisiswhere
the real fun begius!

Multitasking can dramaticauy increase the efficiency of most
applications. For example, in a software development situation,
multitasking auows you to edit, cbmpile, and test simultaneously.
In a word processor, part of the program can input text, while
another part formats it for printing, and yet another part actually
printsthedocunent.Theentirepointofamultitasking,single-user
systemsuchasOS/2istoallowtheusertoachievegreaterthrough-
put by reducing needless idle time to a minimum.

This chapter covers some of the basic OS/2 multitasking ser-
vices. Chapter 10 builds upon the material presented here and
discusses inter-process and inter-thread communication and syn-
chronization issues. The time you invest in understanding the
concepts presented here will reauy pay off later.

ca,,,,,,,:,,-,`,,,,1,,:,,,,,,,,,,,,,,,,

186 0S/22.0 programming
Chapter 9

OS/2 implements multitasking on both a process and a thread level.
Hence, OS/2 provides two sets of multitasking services: one to create and
support processes, and one to create and support threads. This chapter
looks at both, beginning with processes.

==.- ;i:Note: As you know from the preceding chapters, when
you write OS/2 2.0 compatible programs, you generally

so using the Presentation Manager user interface.
However, for the sake of simplicity, the examples shown in this
sectionwillnot.Thereasonforthisistokeeptheexamplesasshort
and to the point as possible. As you know, even a minimal Presen-
tation Manager program includes many lines of code that simply
display a window on the screen. Instead, the examples in this
chapter use normal C-like output, thus reducing their length. This
prevents the point of the example from being 'rburied" inside
dozens of lines of extraneous code. However, in real applications
that you write for OS/2, you will want to use the Presentation
Manager user interface, and there is nothing that prevents the API
servicesdiscussedherefrombeingusedinaPresentationManager
Program.

A WOPD OF CAUTION

Beforewebegin,itisimportanttoemphasizeoneimportantpointfrom
the start: you must never make any assumptions about the way multitask-
ing routines will be executed by OS/2. You must never assume that one
routine will execute before another, or that it will execute for a given
number of milliseconds. For example, if you need one multitasked routine
to execute before another, perhaps to initialize something, you must ex-
plicitly design this into your program. It is not acceptable to find, through
experimentation, that one multitasked routine always executes before
another and then use this "fact" in your program, for three important
reasons:

> First, future versions of os/2 may schedule tasks differently. (Actually,
nothing in the OS/2 documentation says that you can assume any-

An Introduction to Multitasking 187
Chapter 9

thing about the way OS/2 schedules tasks even within the same
version.)

> Second, at a future point, OS/2 may be designed to run on a multiple-
CPU computer, thus allowing true concurrent execution of multiple
tasks, in which two tasks that might have been sequenced in a single
CPU system will be run simultaneously.

> Third, future versions of OS/2 may change the way time slices are
allocated, causing the "first" routine to begin execution but not finish
before the "second" begins.

ij± Remember: When you are dealing with multitasked
routines, there is no valid way to experimentally deter-
mine which routine will be executed "first," unless you

have explicitly provided for this in your program.

To write solid multitasked code, you must assume that all multitasked
routines are actually executed simultaneously, whether in your current
environmenttheyareornot.Mostofthetroublesyouwillexperiencewhen
you use multitasking in your programs will be caused by your forgetting
this important point.

PPOCESSES VERSUS THPIEADS

The distinction between a process and a thread was covered in Part
tine of this book, and is summarized here. A thread is a dispatchable piece
of code. That is, the OS/2 scheduler executes threads. A thread does not
own resources. A process consists of at least one thread and may have
several. A process does own resources. Very loosely, a process is a program
and a thread is somewhat like a subroutine in that program.

MULTIPLE PROCESSES

OS/2 has nine services, shown in Table 9-1, that are used to oversee
thecreationandoperationofmultipleprocesses.Theprocessfunctionsare

188 0S/22.0 programming
Chapter 9

Service

Doswaitchild()
DosExecpgm()
DosExit()

DosExitList()

DosGetlnfoBlocks()
Dosselectsession()
Dossetsession()
Dosstartsession()
Dosstopsession()

TABLE 9-1

Function

Waits for a child process to terminate
Loads and executes another process
Terminates the current process
Registers functions to be called when the
process terminates
Returns a process's information block
Makes specified session foreground
Sets a sessions status
Starts a new session
Stops a session

OS/2 Session-based Services

available when you define INCL_DOSPROCESS before including the
OS2.Hheaderfile.YoucanincludeauDOSfunctiondefinitiousbydefining
INCL_DOS before including the OS2.H header file, but this will include
all DOS functions, structures, and variables, which carry a lot of overhead.
As you can probably tell by looking at the table, OS/2 lets your program
begin the concurrent execution of another program. The program that
executes the second process is called the p¢rc7i£, and the program that the
parent executes is called the cfez.Jd.

Most of the time when you want one program to cause the execution
of another,relatedprogram,youwilluseDosExecpgm().Themainusefor
Dosstartsession() is at system initialization, when you might want to
begin several sessions automatically.

We will begin with a look at DosExecpgm() and its support functions.

STARTING A PROCESS
To execute a second process from a currently executing program, use

DosExecpgm(), which has this prototype:

APIRET APIENTRY DosExecpgm(PCHAR pOZ7/.7tfl77ce,
TJOING chobjnane ,

An Introduction to Multitasking 189
Chapter 9

ULONG execFJ¢g,
PSZ pArg'
PSZpEnv,
PRESULTCODES pRcs,
PSZ pName).,

The buffer pointed to by pob/.77¢777c receives a message that helps to
explainthecauseofafailuretosuccessfullyexecutethespecifiedprogram,
should one occur. The cbob/.71#777c parameter specifies the size of the fail
buffer. The cxccFJ¢g parameter specifies how the child program will be
executed. It's most common values are hsted in the following table.

Macro

EXEC SYNC

EXEC ASYNC

EXEC ASYNCRESULT

EXEC TRACE

EXEC BACKGROUND

Value Meaning

0 Execute synchronously
1 Execute asynchronously,

discard termination code
2 Execute asynchronously,

save termination code
3 Execute in debug mode
4 Detach child

When the child program is synchronously executed, the parent sus-
pends execution until the child has terminated, at which time the parent
resumes. In a res environment, this is the only way that one program can
run another. However, in OS /2's multitasking environment, synchronous
execution will seldom be used and is not of much interest. When the child
is run asynchronously, both the parent ahd child execute concurrently. If
the parent needs extensive information about how the child terminated,
then you will want to call DosExecpgm() with the cxccFJ¢g set to 2; if not,
use the value 1. The debug mode is used for tracing. If you want to detach
the child, use the value 4.

The parameters pArg and p£7tzJ point, respectively, to arrays that hold
any command line arguments and environment variables required by the
child process. Either or both may be null. The array pointed to by pArg
begins with the nun terminated name of the program, followed by a
double-null terminated list of the arguments. For example, if the child
program's name is "TEST" and you want to pass it the argument "HELLO
THERE", you would call DosExecpgm() with ergs pointing to this string:

190 0S/2 2.0 programming
Chapter 9

"TEST\OHELLO THERE\0\0"

The environment variables are passed to the child as null terminated
strings with the last string being double-null terminated.

The structure pointed to by pRes receives information concerning the
termination of the child process. The structure is defined like this:

typedef struct _RESULTCODES {
ULONG codeTerminate;
ULONG codeResult;

} RESULTCODES;

If the child is executed asynchronously, then codeTcr77tz.7i#fc holds the
process identifier (PID) associated with the child process. For asynchro-
nous execution, the codcRes#Jf field is not used. If the child is executed
synchronously, codeTcr7"!.7t¢fc will be 0 for normal termination, 1 for a
hardware error, 2 for system trap, and 3 if the process was killed. For
synchronous execution, codeRcs#Zf holds the child's exit code.

Finauy, the array pointed to by pN¢77tc contains the drive, path, and
name of the program to be executed.

As with all the API services, DosExecpgm() returns zero if successful
and non-zero otherwise.

As a first example, this program first asynchronously executes a
programcalledTEST.EXEandthenbeginsprintingtothescreenfromboth
the parent and child processes.

/* This program asynchronously executes a second process. */

#def ine INCL DOSPROCESS
#include <os2.h>

main ()

CHAR pobjname [128] ;
RESULTCODES result;

if (DosExecpgm(pobjname, sizeof (pobjname) , EXEC_ASYNC,
NULL, NULL, &result, "TEST.EXE"))

printf (" \nERROR from DosExecpgm\n") ;

printf ("Hello from main! \n") ;
Dossleep (2 5) ;

An Introduction to Multitasking 191
Chapter 9

printf ("Hi, main again! !\n") ;

DosExit(EXIT_PROCESS, 0) ;
)

Use this for the TEST.EXE program.

/* This is called from the parent process */

#def ine INCL DOSPROCESS
#include <os2.h>

main ()
(

printf ("Hello from test.\n") ;
Dossleep (50) ;
printf ("Hi, test, again.\n"),.

)

When both programs are executing, you will see the series greetings
displayed on the screen. Because of the difference in the Dossleep()
parameter,theparentandchildaltemateprintingtothescreen.(Youmight
want to try varying the sleep parameters to see the effect. This will give
you insight into how the OS/2 scheduler works.) The ways to insure this
are discussed in Chapter 10.

When the child begins executing, it inherits the parent's environment,
including all open ffle handles (except those with the inheritance flag set
to 0). The child can access these files without opening them. Of course, the
parent's environment can be overridden or augmented by the contents of
the environment array passed at the time of the DosExecpgm() call.

With a slight modification to the DosExecpgm() call in the parent
program, the command line argument "Hi Child" can be passed to the
TEST.EXE program, as shown here:

/* This program starts a process and passes an argument
to the process it creates.

*/

#def ine INCL DOSPROCESS
#include <os2.h>

main ()
(

192 0S/22.0 programming
Chapter 9

CHAR pobjname [12 8] ;
RESULTCODES Res;

if (DosExecpgm(pobjname, sizeof (pobjname) , EXEC_ASYNC,
"TEST\OHi child\0\0" ,NULL, &Res, "TEST.EXE"))

printf (" \nERROR from DosExecpgm\n") ;

printf ("Hello from main! \n") ;
Dossleep (25) ;
printf ("Hi, main again! ! \n") ;

DosExit(EXIT_PROCESS, 0) ;
)

This version of TEST.EXE prints the argument before proceeding:

/* This is called from the parent process. */

#def ine INCL DOSPROCESS
#include <os2.h>

main(int argc, char *argv[])
(

printf ("My parent passed me: %s %s\n",argv[1], argv[2]);
printf ("Hello from test.\n") ;
Dossleep (50) ;
printf("Hi, test, again.\n");

)

RE
Remember: (1) Aparent can execute more than one child
process, and (2) a child process can execute its own child
processes.

WAITING FOR A PROCESS TO TERMINATE
It is not uncommon in multitasking environments for the parent

process to wait, at some point, until an asynchronous child process has
finished. For example, a database program may initiate a sort process and
thencontinueprocessinguserinput.However,theparentwillhavetowait
until the sort is complete before processing a print database request. Put
another way, it is very common for a parent and an asynchronously
executing child process to concurrently execute until some special event
causes the parent to wait for the child to finish. This differs from simple

An Introduction to Multitasking 193
Chapter 9

synchronous execution, in which the parent and child never execute
concurrently. To allow the parent to wait for a child, OS/2 includes the
Doswaitchild() service, whose prototype is shown here:

APIRET APIENTRY Doswaitchild(ULONG ¢cf{.o71,
ULONG apfz.07i,
PRESULTCODES pres,
PPTD ppid,
PID pz'd);

The parameter specifies whether Doswaitchild() should wait for the
termination of just the specified process, or of the specified process and all
(if any) of its child processes. If ¢c£€.o71 is 0 (DCWA_PROCESS),
Doswaitchild() waits for the specified process only. If ¢cfz.o7t is 1
(DCWA_PROCESSTREE), then Doswaitchild() waits for the specified
process and any of its children.

The opfz.o# parameter specifies whether Doswaitchild() will actually
wait for the specified process to terminate or simply return immediately.
If its value is 0 (DCWW_WAIT), it waits for the process to terminate. If it
is 1 (DCWW_NOWAIT), it returns immediately with the result codes of a
process that has already terminated. However, if the specified process is
still executing when Doswaitchild() is called with the no-wait option, it
returns an error.

The structure pointed to by p7'cs is of type RESULTCODES and is the
same as described earher in the discussion of DosExecpgm().

The variable pointed to by pp!.d will hold the process identifier PID of
the terminating process as set by Doswaitchild().

Thepz.dparameterspecifiestheprocessidentifieroftheprocesstowait
for. If it is 0, then the first child process to terminate causes a return, and
the PID of this child is loaded into the ppz.d parameter. Otherwise,
Doswaitchild() waits only for the specified process.

If the specified process does not exist, Doswaitchild() returns an
error.

ThefollowingprogramexecutestheTEST.EXEprogramshownearlier
and waits for it to end.

/* This program starts a process, then waits for it to exit.
*/

#def ine INCL DOSPROCESS
#include <os2.h>

194 0S/22.0 programming
Chapter 9

main ()
(

CHAR pobjname[128] ;
RESULTCODES Res, waitRes,.
PID proc;

if (DosExecpgm(pobjname, sizeof (pobjname) , EXEC_ASYNC,
"TEST\OHi child\0\0" ,NULL, &Res, "TEST.EXE"))

printf (" \nERROR from DosExecpgm\n") ,.

Doswaitchild (DCWA_PROCESS, DCWW_WAIT, &waitRes,
&proc, Res.codeTerminate) ;

printf ("Hello from main! \n") ;
Dossleep (2 5) ;
printf ("Hi, main again! !\n") ;

DosExit(EXIT_PROCESS, 0) ;
)

In this program, notice how the process identifier of TEST.EXE is first
returned in the Res.codcTc7'77t€.7i¢£c field by DosExecpgm() and then used by
Doswaitchild() to specify the specific process to be waited for.

It is important to understand that when Doswaitchild() is caned
usingitswaitmode,thecallingprocessissuspended,thusfreeingtheCPU.

KILLING A PROCESS
The parent can terminate a child process. To understand the need for

this, imagine that you have created a large relational database system. The
main (parent) process includes all the user input and query functionaHty.
However,toachieveuninterrupteduse,youallocatesuchtime-consuming
tasks as printouts, sorting, mail-merges, and backups to separate child
processes, which are executed only when needed. in such a system, it is
very likely that, from time to time, you will need to terminate one or more
childprocessesbecausetheyarenolongerneeded.Toaccomplishthistask,
OS/2 provides DosKillprocess(), which has this prototype:

APIRET APIENTRY DosRIllProcess(ULONG ¢cf €.071, PID p€.d);

Here,ifthe¢cf€.o#parameteriso(DKP_PROCESSTREE),thenthespecified
process plus all of its descendants (if any) are killed. If it is 1 (DKP_PRO-

An Introduction to Multitasking 195
Chapter 9

CESS), then only the specified process is terminated. The p{.d parameter is
the process ID for the process to be stopped.

DosKillprocess() returns zero if successful and returns non-zero if a
failure occurs. One way it can fail is if the specified child process does not
exist.

To see DosKillprocess() in action, try this program, which first exe-
cutestheTEST.EXEprogram,waits25milliseconds,andthenkiusthechild
process before it can print any messages. When all works correctly, the
message "child process terminated" is printed. If the child process has
already terminated, when the parent tries to kill it with the
DosKillprocess(), it fails, and the message "child process already termi-
nated"appears.Toseethismessage,increasetheamountoftimetheparent
process sleeps. Increasing the Dossleep() parameter to 225 will allow
enough time for the child process to terminate before the parent process
can issue the DosKillprocess() command.

/* This program starts a process, waits a bit,
then terminates it with a kill command.

*/

#def ine INCL DOSPROCESS
#include <os2.h>

main ()
(

CHAR pobjnane [12 8] ,.
RESULTCODES Res;
PID proc;

if (DosExecpgm(pobjname, sizeof (pobjname) , EXEC_ASYNC,
"TEST\OHi child\0\0" ,NULL, &Res, "TEST.EXE"))

printf (" \nERROR from DosExecpgm\n") ;

printf ("Hello from main! \n") ;
Dossleep (2 5) ;

if (DosKillprocess (DKP_PROCESSTREE, Res.codeTerminate))
printf ("child process already terminated\n") ;

else
printf ("child process terminated\n") ;

DosExit (EXIT_PROCESS, 0) ,.
)

196 0S/22.0 programming
Chapter 9

CREATING AN EXIT FUNCTION LIST
Since it is possible for a parent function to unexpectedly terminate a

child process, it may be necessary to insure that the child has some means
of dying a clean death. For example, you will want the child to flush any
disk buffers and close all files. There may be special hardware devices that
need to be reset, and it may even be appropriate to notify the user that the
process is being killed. To allow the child to perform these tasks, a special
list of functions is called whenever a process (child or parent) terminates.
The functions that comprise this list are called cxz.£¢#c£!.o7is. Collectively,
theyarereferredtoasthecx!.£¢71c£!.o7iJ€.s£.OS/2providestheDosExitList()
service to support the exit function list. Its prototype is shown here:

APIRET APIENTRY DosExitList(ULONG ordercodc,
PFNEXITLIST f2ty) ;

The value of ordcrcodc determines what DosExitList() does. The valid
values are shown here:

Macro Value Meaning

EXLST ADD 1 Add function to the exit hst
EXLST REMOVE 2 Remove function from the exit list
EXLST EXIT 3 Exit current function, move to next

To add or remove a function from the list, you must pass a pointer to
thefunctioninthez2rtyparameter.Thefunctionmustbedeclaredasfollows:

VOID APIENTRY func(ULONG I/2Tcr77£Code);

The function will be passed a termination code, in the #zTcr777Code param-
eter, which will be one of the following values:

Macro Value Mean ing

TC EXIT 0

TC HARDERROR 1
TC TRAP 2
TC KILLPROCESS 3

TC EXCEPTION 4

Normal termination
Unrecoverable error
System trap error (16-bit child)
Process was killed
Exception error (32-bit child)

An Introduction to Multitasking 197
Chapter 9

Your exit function can take different actions based upon the termination
code, if so desired.

The basic approach to establishing an exit function is to first call
DosExitList() to add the function to the hst. At termination, the last thing
your function must do is call DosExitList() with the ordercodc parameter
set to 3 (EXLST_EXIT), to cause OS/2 to move on to the next function in
the list. If for some reason you want to remove a function that you
previously added to the list, call DosExitList() with ordcrcode set to 2
(EXLST_REMOVE).

Thereisoneveryimportantthingtorememberaboutanexitfunction:
it carmot be terminated by OS/2. This means that your exit functions
should be very short and never under any circumstances delay the termi-
nation of the process for more than a few miuiseconds. Keep in mind that
the environment surrounding the exit function is dying; it is imperative
that your function do what it needs to do as quickly as possible. An
incorrectlycoustructedexitfunctioncannotcrashOS/2,butitcanmakeit
impossibleforos/2tocompleteitsterminationoftheprocess,andthereby
degrade system performance.

As a simple example, the following program puts the function ex-
func() into the exit hst and then prints 100 numbers. Upon termination,
the exfunc() function is called, and it displays a message indicating that
the process is terminating normally.

/* This program creates an exit function which is called
when the program terminates.

*/

#def ine INCL DOSPROCESS
#include <os2.h>

VOID APIENTRY exfunc (ULONG) ;

main ()
(

int i;

DosExitList (EXLST_ADD, exfunc) ;
for(i=0; i<100; i++)

printf („%d „,i);

DosExit (EXIT_PROCESS, 0) ;
)

198 0S/22.0 programming
Chapter 9

VOID APIENTRY exfunc (ULONG ulTermcode)
(

printf ("\nprogram terminating with code: %d\n",
ulTermcode) ;

DosExitList(EXLST_EXIT, 0) ;
)

ERROR CHECKING
A wide variety of errors can occur when you create or manipulate

processes.Forexample,inagivensituationOS/2maynotbeabletocreate
anewprocess,becauseallprocessidentifiersarealreadyallocated.Inyour
applications,itisimportanttowatchforerrorsandtakeappropriateaction
should one occur.

CREATING NEW SESSIONS

When you used DosExecpgm() to start new processes, these new
processes ran in the same session (sometimes called a scrce7t groz/p) as the
parent. While this is very useful for related processes that interact with
each other to form a unit, it is not very desirable when the processes are
not related. For this reason, OS/2 allows you to start a process in its own
sessionbyusingtheDosstartsession()service,whoseprototypeisshown
here:

APIRET APIENTRY Dosstartsession(PSTARTDATA psd,
PULONG pidsession,
PPTDppid);

The structure pointed to by psd is defined like this:

typedef struct STARTDATA
(

USHORT Length;
USHORT Related;
USHORT FgBg,.
USHORT Traceopt;
PSZ PgmTitle;
PSZ PgmName ;

/* size of this struct */
/* session relation */
/* foreground / background */
/* trace active flag */
/* session title */
/* program to execute */

An Introduction to Multitasking 199
Chapter 9

PBYTE Pgmlnputs ; / *
PBYTE TermQ ; / *
PBYTE Environment; /*
USHORT Inheritopt; /*
USHORT SessionType; /*
PSZ IconFile; /*
ULONG PgmHandle ; / *
USHORT Pgmcontrol; /*
USHORT Initxpos; /*
USHORT InitYPos; /*
USHORT Initxsize; /*
USHORT InitYsize; /*
PSZ ObjectBuffer; /*
ULONG ObjectBuffLen; /*
} STARTDATA;

command line arguments */
termination queue */
environment to use */
inherit the environment */
one of five session types */
named icon or null */
used for window calls */
how to start program */
X pos, lower left corner */
Y pos, lower left corner */
length of X coordinate */
length of Y coordinate */
fail buf fer */
buffer length*/

The Lc7igffe field must hold the length of the STARTDATA structure. If
RcZ#£cd is 0, the new session is completely independent of the parent. If it
is 1, the new session is a child of the parent. If FgBg is 0, the new session
will become the foreground task; if it is 1, the new session becomes a
background task. The new session can only become a foreground task if
the parent is in the foreground when it creates the new session.

If Trflccopf is 0, the new session is not set up for tracing; if it is 1, the
new session may be traced. The string pointed to by Pg777Tz.Zc is the name
of the session and may be null. The string pointed to by Pg777N¢777c is the
nameoftheprogramthatwillbeginrunhinginthenewsession.Thestring
pointed to by Pg777J7tpt/£s contains any command line arguments needed
by the program and may be null. The string pointed to by Tcr777Q is the
name of the termination queue and may be null. (OS/2 queues will be
discussed later in this book.)

£71zJz.7'o71777c71£ holds the current environment information. If the next
field, J7tfecrztop£, is set to 1, it causes the new session to inherit the current
session's environment, including any open file handles.

The new session can be one of five types: full screen, windowed,
PresentationManager,DOS,orwindowedDOS.TheScss€.o7iTlypcholdsone
of the five session types. The only restriction is that a DOS session cannot
start another session. A custom icon can be specified in the Jco77Fz7c field,
and can be null, causing the default icon to be used. The Pg77H¢77dzc is used
to specify how the window is started: a setting of 2 will cause the window
to be maximized on startup; setting this field to 1 win create a minimized
window session.

200 0S/22.0 programming
Chapter 9

Ther\extfourfields,Initxpos,InitYPos,Initxsize,andlnitYsize,specify
the starting location and the size of the new window being created. The
lasttwofieldsholdadditionalmessageinformationpassedbackwhenthe
Dosstartsession() call fails.

The pz.dscssz.o7i parameter points to a variable that receives the session
identifier when the call returns. The ppz.cZ parameter points to a variable
that receives the process identifier of the process run in the newly created
session.

The definitions required for using the session manager functions,
structures, and variables are included when you define
INCL_DOSSESMGRbeforeincludingOS2.Hinyourprogram.Youcansee
this define being used in the following sample program.

This program begins a new session called "beep session" and starts
running the BEEP.EXE program. When you try this program, remember
that you will need to have BEEP.EXE in the current working directory.

/* This program starts a new session called "beep session",
and runs the program BEEP.EXE.

*/

#def ine INCL DOSPROCESS
#def ine INCL DOSSESMGR
#include <os2.h>

main ()
(

STARTDATA sdata,.
ULONG idsession,.
PID pid;
CHAR buff [CCHMAXPATH] ;
APIRET retcode,.

sdata.Length = sizeof (sdata) ;
sdata.Related = 0; /* no relation */
sdata.FgBg = 0; /* foreground session */
sdata.Traceopt = 0; /* trace off */
sdata.PgmTitle = "beep session",.
sdata.PgmName = "beep.exe";
sdata.Pgmlnputs = NULL; /* no arguments */
sdata.TermQ = NULL,.
sdata.Environment = NULL;
sdata.Inheritopt = 1; /* inherit environment */
sdata.SessionType = 0; /* default session */

An Introduction to Multitasking 201
Chapter 9

sdata.IconFile = NULL; /* no icon */
sdata.PgmHandle = 0;
sdata.Pgmcontrol = 2,. /* window controls */
sdata . Initxpos
sdata . InitYPos
sdata . Initxsize
sdata . InitYsize
sdata.ObjectBuffer = buff ,.
sdata.ObjectBuffLen = sizeof (buff) ;

retcode = Dosstartsession(&sdata, &idsession, &pid) ;
if (retcode != 0)

printf ("Error in Dosstartsession\n") ;

DosExit (EXIT_PROCESS, retcode) ;
)

Compflethefollowingexampleprogram,nameitBEEP.EXE,andplace
it in the current directory.

/* This program simply beeps. Name this program BEEP.EXE. */

#def ine INCL DOSPROCESS
#include <os2.h>

main ()
(

DosExit(EXIT_PROCESS, DosBeep(600, 400)) ;
)

In this program the new session is not a child of the parent, and it
becomes the foreground task. It is advised to always check for errors,
because in actual practice the call to Dosstartsession() is susceptible to a
wide variety of errors. For example, OS/2 may not be able to start another
session, because all its session identifiers may be allocated.

If the program BEEP.EXE specified in the Pg777N¢"c field of the
STARTDATA structure is not found, the parent session will print the
message "Error in Dosstartsession".

SELECTING AND STOPPING A SESSION
If your program starts a child session, then your program can switch

to that session using Dosselectsession(), whose prototype is shown here:

202 0S/22.0 programming
Chapter 9

APIRET APIENTRY Dosselectsession(ULONG €.dsess{.o7t);

Here, €.dscssz.o7i is the session identification number of the session to
switch to. The z.dscssz.o77 value is obtained during the call to Dosstartses-
sion(). The second parameter to Dosstartsession() is a pointer to a type
ULONG, which is assigned the session identification number during the
call.

You can only use Dosselectsession() to switch to a child session or
back to the parent. You cannot select an independent session. To switch to
the parent, call Dosselectsession() with £.dscsst.o7i assigned a value of 0.

TheparentsessioncanstopachildsessionusingtheDosstopsession()
service, which has this prototype:

APIRET APIENTRY Dosstopsession(ULONG scope,
ULONG €.dscssz.o71);

If the scope parameter is 0 (STOP_SESSION_SPECIFIED), only the
specified session is terminated. If it is 1 (STOP_SESSION_ALL), the spec-
ified session plus any children of that session are terminated. The €.dscss£.o71
parameter holds the session identification code of the session to be termi-
nated, and is only used when scope is set to STOP_SESSION_SPECIFIED;
otherwise, it is ignored. Dosstopsession() returns zero if no error occurs.

THREADS

The single most important thing to understand about OS/2's multi-
tasking model is that it is thread (rather than process) based. A thread is the
unitofcodedispatchedbythescheduler.Alltheprogramsyouhaveseenup
tothispointhaveconsistedofasinglethread.Thatis,theentireprogramwas
one thread of execution. However, this need not always be the case, because
OS/2letsyou,theprogrammer,definethreadsofexecutionwithinaprogram.
Thisallowsasingleprogramtocreateconcurrentlyexecutingroutineswhich
can, if used correctly, greatly enhance the efficiency of your program. h fact,
OS/2 also allows you to set the priority of the threads within a program, so
that you can choose what routines get the greatest access to the CPU. The
thread-based services are listed in Table 9-2.

An Introduction to Multitasking 203
Chapter 9

Service

DoscreateThread()
DosResumeThread()
Dossetpriority()
DosSuspendThread()

TABLE 912

Function

Creates a thread of execution
Restarts a suspended thread
Sets a thread's priority
Suspends a thread's execution

OS/2 Theead-based Services

In the first half of this chapter you saw how to create concurrently
executing processes. While the multitasking of processes is a wonderful
improvementoversingle-taskingandallowsanumberofdivergentappli-
catious to share CPU time, it is not, generally speaking, the approach you
should take when you want to multitask pieces of a single application.
Instead, you should use multiple threads within the application.

Another important point about threads and processes is that each
process can have up to 4095 separate threads, and there can be up to 4095
separate processes. You can use as many threads as you need (up to the
maximum amount) in a single process.

Each thread inherits the environment of the process it is part of . This
includes open files, virtual address space, and environlnental strings. If
one thread in a process opens a file, for example, other threads can use that
file handle. All threads in a program share the same code and data
segments, so access to global data and routines is unrestricted.

The thread that begins a process's execution is caued either the 77zflz.71
#zrcfld or ffereflcz I. It is somewhat special, as you will soon see. There is
always at least one thread running for each process. When the last thread
dies, the process itself ends. A thread can either be running, not running,
or blocked from rurming. Cinly one thread will be running on the system
at any given moment.

Frankly, OS/2's thread-based multitasking system is one of its most
exciting, and powerful, features.

CREATING THREADS
To create a thread of execution your program uses the

DoscreateThread() service, whose prototype is shown here:

204 0S/2 2.0 programhing
Chapter 9

APIRET APIENIRY DoscreateThiead(PTID pf€.d,
PFNTHREAD Z2¢;
ULONG p¢r¢777,
uLONGflng,
ULONG cbsf¢ck);

Here, zzfr is a pointer to a function that is the entry point into the thread.
The function must be declared as VOID with one ULONG parameter. The
single ULONG parameter may be passed to the thread by pflr¢77z. You can
control the execution of the thread withfl¢g: if bit one is set to 0, execution
begins immediately; but if the first bit is set to 1, execution of the thread is
suspended until the apphcation calls DosResumeThread().

The size of the stack is specified by the cZ7Sf¢ck parameter. Each thread
uses its own stack. This region must be at least 512 bytes long, but you
reallyshouldallowatleast2048,ifyouwfllbeusinganyoftheAPIservices
inside the thread.

Upon return from the call, pf z.d will point to the thread's ID number.
The following short program uses DoscreateThread() to create and

execute two threads.

/* This program uses DoscreateThread to activate two
concurrently executing threads.

*/

#def ine INCL DOSPROCESS
#include <os2.h>

VOID APIENTRY threadl (ULONG) ;
VOID APIENTRY thread2 (ULONG) ;

main ()
(

TID ptid;

printf ("This is the main thread.\n") ;
printf ("thread 1 beeps low, thread 2 beeps high.\n") ;

DoscreateThread(&ptid, threadl,
DoscreateThread(&ptid, thread2 ,

Dossleep(1000); /* wait for the children to finish */
DosExit(EXIT_PROCESS, 0) ;

An Introduction to Multitasking 205
Chapter 9

VOID APIENTRY threadl (ULONG unused)
(

DosBeep(400, 400);

)

VOID APIENTRY thread2 (ULONG unused)
(

DosBeep(700, 700);

)

Eachthread,includingthemainprogramthread,terminateswhenthe
end of the function is encountered. However, you can terminate a thread
conditionany by calling DosExit(), whose prototype is shown here:

VOID APIENIRY DosExit(ULONG ¢cf €.o7i, ULONG res%Jf);

If ¢cfz.o7t is 0 (EXIT_THREAD), only the current thread is terminated.
If it is 1 (EXIT_PROCESS), the entire process is killed. The value of res%Jf
is passed to the cauing process.

If the main thread terminates, it terminates the process, even if other
threads in the process are still active. Keep this in mind when designing
your multithread applications.

Frankly, there is a problem using DoscreateThread() directly with
high-level languages. First, it is possible that not all high-level language
library functions will be reentrant. If a library function is not reentrant, it
cannotbecalledbytwodifferentthreadsatthesametimewithoutcausing
trouble. Although all the API services are reentrant, it is possible that
language runtime libraries will not be. This is the reason that DosBeep()
was used in the sample program rather than printf(). Most standard C
libraries will not work with multiple threads. Second, because each thread
has its own stack, a high-level language that performs runtime stack
overflow checking will report false stack overflow errors. Generauy, you
can work around this problem by using a compiler option to turn off
runtime stack checking. However, you win lose the advantage of runtime
stack overflow checking.

WAITING FOR THHEADS TO FINISH
Becausetheentireprocessdieswhenthemalntlueaddies,itisimportant

to keep the main thread alive until all desired program activity has
finished. More generally, it is important for your program to know when

206 0S/22.0 programming
Chapter 9

the various threads of execution have either completed or are at least in a
safe state, so that the program can terminate. Although Chapter 9 covers
OS/2 inter-process and inter-thread communication and synchronization
services, which provide a solution to this problem, we will still need a
solution (if only temporarily) for our examples. The one shown here can
safely be used in many applications, but should not be construed as a
general solution. (The reasons for this will be made clear in Chapter 10.)

The approach and the examples developed here are designed to serve
two purposes. First, they introduce the basic notion of thread synchroni-
zation and communication and will make the concept of the sc777¢z7feorc,
OS/2's standard synchronization method, easier to understand and ap-
preciate. Second, they serve as illustrations of some key multitasking
concepts.

Ingeneral,whenyouneedtowaituntilathreadfinishes,youestablish
a flag which the thread sets when it is done executing. Another thread
simply examines this flag to see if the other thread is executing or not. For
example, you can rewrite the previous example so that it automatically
terminates when both threads have terminated, as shown here:

/* This program uses DoscreateThread to activate two
concurrently executing threads, and then waits until
each thread has set a global flag.

*/

#def ine INCL DOSPROCESS
#include <os2.h>

VOID APIENTRY threadl (ULONG) ;
VOID APIENTRY thread2 (ULONG) ;

UCHAR flagl=0;
UCHAR flag2=0;

main ()
(

TID ptid'.
printf ("This is the main thread.\n") ;
printf ("thread 1 beeps low, thread 2 beeps high.\n") ;

DoscreateThread(&ptid, threadl,
DoscreateThread(&ptid, thread2 ,

while(flagl==O 11 flag2==0) Dossleep(25); /* wait */

An Introduction to Multitasking 207
Chapter 9

DosExit(EXIT_PROCESS, 0) ;

)

VOID APIENTRY threadl (ULONG unused)
(

DosBeep(400, 400);
flag1=1;

)

VOID APIENTRY thread2 (ULONG unused)
(

DosBeep(700, 700),.
flag2=1;

)

As you can see, the program waits for the other threads to terminate with
this wait loop:

while(flagl == 0 I I flag2 == 0); /* wait */

However, this leaves much to be desired, for two reasons:

> First, it keeps the main thread active (and soaking up CPU time) while
it is doing no productive work.

> Second, and perhaps more important, is that the while loop is com-
pute-bound.

Unlike waiting for a keypress, which causes the thread to suspend,
the while loop keeps the thread in a constant state of being ready-to-
run. Remember, a suspended thread demands no CPU cycles. How-
ever, a thread that is compute-bound is always able to run and is
therefore given CPU cycles. This fact causes the program to run quite
slowly, much slower than you might have thought ahead of time. In
the next section, you win see a solution to this problem.

WAITING EFFICIENTLY
Throughout this book the Dossleep() service has been used without

much explanation. Now is the time for you to leam how important
Dossleep() can be. The Dossleep() function causes the thread that calls it
to suspend for a specified number of milliseconds. Keep in mind that
Dossleep()isnotsimplyatime-delayloop,whichwouldeatupcputime.

208 0S/2 2.0 programming
Chapter 9

Instead, it actually instructs the OS/2 scheduler to suspend the calling
thread for the specified time.

ThecentralissuehereisthatDossleep()isnotsimplyadelayfunction.
Instead, its careful use auows you to increase the efficiency of your appli-
catious. Any time that your program enters a polling loop that is not
extremelytime-critical,youshouldinsertacalltoDossleep()sothatother
threads can have more CPU eycles.

THnEAD PRloRITIES
AsstatedinPartOne,OS/2hasfourcategoriesofexecutionpriorities:

idle, regular, foreground, and time-critical. Within each category, there are
32prioritylevels,Othrough31.Bydefaultauthreadswithinaprocesshave
the same priority: regular, level 0. However, you can alter a thread's
priority using the Dossetpriority() service, which has this prototype:

APIRET APIENTRY Dossetpriority(ULONG scare,
ULONG cJ¢ss,
TJONG delta,
UTioNG PorTid);

If the scope parameter is equal to 0 (PRTYS_PROCESS), then all the
threads within the calling process win have their priority altered. If scapc
is 1 (PRTYS_PROCESSTREE), then all the threads in the calhig process
plus any child processes are affected. If scapc is 2 (PRTY_THREAD), then
only the specified thread's priority is changed.

The cJ¢ss parameter determines which priority class the specified
thread or threads win become. It can take the following values:

Macro Value Priority class

PRTYC NCHANGE 0 No change
PRTYC IDLETIME 1 Idle
PRTYC REGULAR 2 Regular
PRTYC THVIECRITICAL 3 Time-critical

PRTYC FOREGROUNDSERVER 4 Foreground task

The deJ£¢ parameter is a signed integer in the range -31 to 31, which
will be added to the current priority setting. For example, if dcJ£¢ is 5 and

An Introduction to Multitasking 209
Chapter 9

the current priority setting is 7, then the new priority, after the call, will be
12.

The Po7`T€.d parameter specifies the process or thread that will have its
priority changed.

Youcanfindoutathread'spriorityusingtheDosGetpriority()service,
which has this prototype:

APIRET APIENTRY DosGetlnfoBlocks(PTIB *ppfz.b,
PPT:B*pppib);

A call to DosGetlnfoBlocks() will fill the pp££.b parameter with the
information pertaining to the current thread, and fin the pppz.b parameter
with the information pertaining to the current process. This information
is used in cans to Dossetpriority() to identify and change the priority of
threads and/or processes.

SUSPENDING THREADS
A thread's execution can be suspended using DosSuspendThread(),

which has this prototype:

APIRET APIENTRY DosSuspendThread(TID f €.d);

Here, £z.d is the thread identifier of the thread to be suspended. When a
threadissuspended,theschedulerdoesnotgrantitaccesstothecpu.You
can only suspend threads that are within the same process as the
DosSuspendThread() can.

A thread suspended by DosSuspendThread() stays suspended until
it is restarted by a call to DosResumeThread(), which has this prototype:

APIRET APIENTRY DosResun.eThread(TID ££.d);

Here, £t.d is the thread's identifier. DosResumeThread() can only restart a
thread that was previously stopped by a call to DosSuspendThread().

To see how these services work, try this program, in which the first
thread altemately stops and restarts the second thread each time through
its main loop. The second thread simply counts numbers until the first
thread terminates.

/* This program uses DoscreateThread() to activate two
concurrently executing threads, and then illustrates

210 0S/2 2.0 programming
Chapter 9

the use of DosSuspendThread() and DosResumeThread() .
*/

#def ine INCL DOSPROCESS
#include <os2.h>

VOID APIENTRY threadl (ULONG) ;
VOID APIENTRY thread2 (ULONG) ;

CHAR flagl=0;
CHAR flag2=0;

TID tidl, tid2;

main ()
(

printf ("This is the main thread.\n") ;

DoscreateThread(&tidl, threadl,
DoscreateThread(&tid2, thread2 ,

while(flagl==O || flag2==0) Dossleep(25); /* wait */

DosExit (EXIT_PROCESS, 0) ,.
)

VOID APIENTRY threadl (ULONG unused)
(

int i;
char f lag;

flag = 0;
Dossleep(1000); /* allow time for thread 2 to start */
for(i=0; i<100; i++)
{ /* loop, each time either suspend or restart thread 2 */

printf("Thread 1 (%d) -", i);
flag = !flag;
if (flag != 0)
(

if (DosSuspendThread(tid2) != 0)
printf ("Error in suspending thread\n") ;

else
printf ("suspending thread 2 \n") ;

)

else

An Introduction to Multitasking 211
Chapter 9

(

if (DosResumeThread(tid2) != 0)
printf ("Error in restarting thread\n") ;

else
printf ("restarting thread 2 \n") ;

)

)
flagl = 1; /* set flag to allow parent to terminate. */

)

VOID APIENTRY thread2 (ULONG unused)
(

int i;
/* loop and wait, see how far it gets */
for(i=0; i<30000 && flagl==0; i++)

Dossleep (10) ;
printf("thread 2 completed %d loops. \n", i);

flag2 = 1; /* set flag to allow parent to terminate. */
)

CHAP

SERIALIZATloNAND

INTEPl-PPOCESS

COMMUNICATION

TE-R

Now that you know the basics of OS/2's multitasking capabilities,
it is time to leam about some important concepts and APT services
that allow you to bring multiply-executing processes and threads
under control. As you will see in this chapter, there are two major
issues that arise in a multitasking environment which must be
addressed. First, there must be some way to serialize access to
certain resources, so that only one task has access to the resource at
any one time. Second, there must be some way for one process to
communicatewithanother.Thepurposeofthischapteristoexplore
OS/2's solutious to these problems.

THE SEPIALIZATION PROBLEM

OS/2mustprovidespecialservicesthatallowaccesstoashared
resource to be serialized, because without help from the operating
system, there is no way for one program (or thread) to know that it
has sole access to a resource. To understand this, imagine that you
arewritingprogramsforamultitaskingoperatingsystemthatdoes

214 0S/22.0 programming
Chapter 10

not provide any serialization support. Further, imagine that you have two
multiply-executing processes, A and 8, both of which, from time to time,
require access to some resource R (such as a disk drive) that must only be
accessedbyonetaskatatime.Asameansofpreventingoneprogramfrom
accessingRwhiletheotherisusingit,youtrythefollowingsolution.First,
youestablishavariablecalledflag,thatcanbeaccessedbybothprograms.
Your programs initialize flag to 0. Next, before each piece of code that
accesses R, you wait for the flag to be cleared (0), then you set the flag,
access R, and finally clear the flag. That is, before either program accesses
R, it executes this piece of code:

while(flag) ,. /* wait for flag to be zero */
flag = 1; /* set flag so another process knows

that you are using resource R */

/* code which accesses resource R */

flag = 0; /* clear the flag. */

The idea behind this code is that neither process will access R if flag is set.
Conceptually, this approach is in the spirit of the correct solution. How-
ever, in actual fact it leaves much to be desired for one simple reason: it
won't always work! Let's see why.

Using the code just given, it is possible for both processes to access R
at the same time. The while loop is, in essence, performing repeated load
and compare instructions on flag or, in other words, it is testing the flag's
value. The next line of code sets the flag's value. The trouble is that it is
possible for these two operations to be performed in two separate time
slices. Between the two time slices, the value of flag might have been
changed by a different process, thus allowing R to be accessed by both
processes at the same time. To understand this, imagine that process A
enters the while loop and finds that flag is 0, which is the green light to
access R. However, before it can set flag to 1, its time slice expires and
process 8 resumes execution. If 8 executes its while, it too will find that
flag is not set and assume that it is safe to access R. However, when A
resumes it will also begin accessing R. The crucial point of the problem is
that the testing of flag and the setting of flag do not comprise one
uninterrupted operation. Rather, as just illustrated, they can be separated
by a time slice of the other process. No matter how you try, there is no way,
using only application-level code, that you can absolutely guarantee that
one and only one process will access R at one time.

Serialization and Inter-process Communication 215
Chapter 10

The solution to the serialization problem is as elegant as it is simple.
The operating system, in this case OS/2, provides a routine that in one
uninterrupted operation, tests and, if possible, sets a flag. In the language
of operating systems engineers, this is called a fcsf fl71d scf operation. For
historical reasons, the flags used to control serialization are called sc777¢-
pfeorcs. The OS/2 services that allow you to use them are discussed in the
next section.

OS/2 SEMAPHORES

OS/2 provides twenty services that are used to create and access
semaphores. These functions are shown in Table 10-1. The semaphore
services are broken down into three major categories: event semaphores,
mutex (mutual exclusion) semaphores, and muxwait (multiple wait)
semaphores. The most important use of these services is to allow separate
processes or threads to synchronize their activity. As described in the
previous section, one important use of semaphores is to control access to
a shared resource. However, they have other uses, such as allowing one
task to signal another that an event has occurred.

CHOOSING THE FIGHT SEMAPHORE
OS/2 lets you use semaphores to synchronize the actions of threads

within a process or the actions of separate processes. To this end, OS/2
supports three different types of semaphores: czJc7i£, 777#fcx, and 77z#xzt7¢3.£.

The event semaphore is used by threads in a process to signal other
threads within this and other processes that a particular event has oc-
curred, such as the allocation of a block of memory. One thread may want
to write to a block of memory, but must first wait for another thread to
allocate the memory.

Amutexsemaphoreisusedwhenyoumustlimitactivitybetweentwo
or more threads or processes. Using a mutex semaphore, only one thread
is allowed to execute at any given time. This type of semaphore is used
when threads or processes are sharing a resource that demands exclusive
access. A good example of this is when two threads are writing to the same
file.

216.OS/2 2.0 Programming
Chapter 10

The muxwait semaphore is the compound semaphore. This type of
semaphore allows a process or thread to wait for one or all of a group of
semaphores to be either cleared or posted. A group of semaphores may
contain up to 64 event or mutex semaphores, but event and mutex sema-
phores cannot be mixed within the same muxwait semaphore.

Service

DoscreateEventsem()
DoscreateMutexsem()
DoscreateMuxsem()
DosopenEventsem()
DosopenMutexsem()
DosopenMuxsem()
DoscloseEventsem()
DoscloseMutexsem()
DoscloseMuxsem()
DosQueryEventsem()
DosQueryMutexsem()
DosQueryMuxwaitsem()
DoswaitEventsem()
DosRequestMutexsem()
DoswaitMurwaitsem()
DosResetEventsem()
DosReleaseMutexsem()
DosAddMuxwaitsem()
DosDeleteMuxwaltsem()
DosPostEventsem()

TABLE 10-1

Function

Create an event semaphore
Create a mutex semaphore
Create a muxwait semaphore
Open an event semaphore
Open a mutex semaphore
Open a muxwait semaphore
Close an event semaphore
Close a mutex semaphore
Close a muxwait semaphore
Request semaphore posting count
Request owner information
Request semaphore records
Wait for an event semaphore
Request a mutex semaphore
Wait for a muxwait semaphore
Reset an event semaphore
Release a mutex semaphore
Add a semaphore to the list
Remove a semaphore from the list
Post an event semaphore

The OS/2 Semaphore Services

Serialization and Inter-process Communication 217
Chapter 10

EVENT SEMAPHOPES

tine of the first things you learn about the OS/2 semaphore API
functions is that you can't use just one! The semaphore routines work in
conjunction with each other, so you need to learn about a few before any
examples can be developed.

To use an event semaphore, first create a semaphore using the
DoscreateEventsem() service, which has this prototype:

APIRET APIENTRY DoscreateEventsem(PSZ 71fl77ic,
PHEW handle ,
ULONGfl¢gs,
BcOL32 €.71{.£);

Here, 7t¢77tc is a pointer to a string that is the name of the semaphore. This
string must have the prefix "\SEM32\". The parameter fe¢7tdJc is a pointer
to the handle of the semaphore. A list of attributes describing the sema-
phore is kept infl¢gs, and the initial state of the semaphore (set or cleared)
is put into I.72!'£.

To cause a thread to suspend execution until a specified semaphore is
posted, use DoswaitEventsem(), whose prototype is shown here:

APIRET APIENTRY DoswaitEventsem (HEV J2¢7tdJe,
UTJONG timeout) ;

The fe¢7tdJc parameter contains the handle of the event semaphore to wait
for. The f{.77tco#£ parameter determines how long, in milliseconds, the
calling thread will suspend if the semaphore is not cleared first. If the
value of fz.77tco#£ is -1 (SEM_INDEFINITE_WAIT), the service will wait
indefinitely.

To post a semaphore, use DosPostEventsem(), whose prototype is
shown here:

APIRET APIENTRY DosPostEventsem(HEV ho7ldJe);

The semaphore to be posted is identified by the semaphore handle stored
in the parameter fefl7tdJc. The posting of a semaphore signals other threads
that they may continue execution.

The next few sections show how to use these services to synchronize
program activity.

218.OS/2 2.0 Programmng
Chapter 10

AN EVENT SEMAPHORE EXAMPLE
As you may recau from the previous chapter, one trouble with multi-

thread programs is that the main thread must stay alive and wait for the
other threads in the process to terminate. In that chapter a temporary
solution was offered which involved the main thread looping while it
waited for flags to be set by the other threads. It was pointed out that
although this solution worked in the specific situation, it should not be
generalized. As you should know by now, a major problem with this
solution is that it wastes CPU cycles. A better solution is to use event
semaphores, because when a thread waits for a semaphore, it suspends
until that semaphore is cleared. When the thread is suspended, it does not
consume any CPU cycles.

The following program uses event semaphores to signal the termina-
tion of two threads.

/* The main program thread waits for two event semaphores
to be posted from two different threads before terminating.

*/

#def ine INCL DOSPROCESS
#def ine INCL DOSSEMAPHORES

#include <os2.h>
#include <stdio.h>
#include <string.h>

VOID EXPENTRY threadl (ULONG) ,.
VOID EXPENTRY thread2 (ULONG) ,.

HEV handlel;
HEV handle2;
UCHAR semi [16] ;
UCHAR sem2 [16] ,.

TID tidl;
TID tid2;

main ()
(

printf ("This is the main thread.\n") ;
printf ("thread 1 beeps low, thread 2 beeps high.\n") ,.

/* Create two event semaphores, initially set */
strcpy(semi, "\\SEM32\\SEM1");

Serialization and Inter-process communication 219
Chapter 10

strcpy(sem2, "\\SEM32\\SEM2") ;
DoscreateEventsem(semi, &handlel, 0, 0);
DoscreateEventsem(sem2, &handle2, 0, 0);

/* Start two threads */
DoscreateThread(&tidl, threadl, 0, 0, 4096);
DoscreateThread(&tid2, thread2, 0, 0, 4096);

/* Wait for the second semaphores to be posted. */
DoswaitEventsem(handle2, SEM INDEFINITE_WAIT) ;

DosExit(EXIT_PROCESS, 0) ;
)

VOID EXPENTRY threadl (ULONG unused)
(

DosBeep(400, 400);

/* Post an event for semi */
DosPostEventsem (handlel) ;

)

VOID EXPENTRY thread2 (ULONG unused)
(

/* Wait for the first thread to finish. */
DoswaitEventsem(handlel, SEM_INDEFINITE_WAIT) ;
DosBeep(700, 700);

/* Post an event for sem2 */
DosPostEventsem (handle2) ;

)

Theprogramestablishestwoeventsemaphores,semlandsem2.Themain
thread creates the semaphores before creating the child threads. Next, the
program creates the child threads and waits for the semaphores to be
posted by the child threads.

You might find it interesting to try a time-out value in place of
SEM_INDEFINITE_WAIT, such as 200, to see the effect. The program will
run for a short while and then terminate when the time-out limit is reached.
Givenashortenoughvalueinfz.777co#£,thechildthreadsmaynothavetime
to beep before the process exits.

Remember: any thread within the same process can directly access an
event semaphore. If the thread is in a different process, the desired sema-

220 0S/2 2.0 programming
Chapter 10

phore must first be opened using the DosopenEventsem() function, the
prototype of which is shown here:

APIRET APIENTRY DosopenEventsem(PSZ 7t¢77ec, PHEV fefl7idzc);

All that is needed to open a semaphore that was created in another process
is the 7t¢777c of the semaphore. When opening a semaphore by name, set the
fe¢7zdJc parameter to 0. For example, you can access semi of the previous
program by opening the event semaphore from a different process, as
shown in the following code fragment:

(
HEV handle,.
DosopenEventsem("\\SEM32\\seml" , &handle) ;

/* wait for threadl of the other process to finish */
DoswaitEventsem (handle, SEM_INDEFINITE_WAIT) ;

MUTEX SEMAPHORES

As was discussed at the begirming of this chapter, one of the key
aspects of semaphore usage is that some means of testing and setting a
semaphore in one uninterrupted operation must be provided. h the
examples given so far, this operation was not needed, because the sema-
phores simply signaled the conclusion of some event. However, to use a
semaphore to serialize access to a shared resource, there must be a way for
your program to wait until a semaphore is cleared and then set the
semaphore in one operation. A mutex semaphore is considered cleared if
it is unowned, and set if it is owned. Owned means that nobody else can
use the resource until it is released; unowned means that the resource is
free to be accessed by another thread or process.

When you need to synchronize access to a shared resource between
two or more mutually exclusive threads or processes, an application can

Serialization and Inter-process communication 221
Chapter 10

use a mutex semaphore. To create a mutex semaphore, call Doscreate-
Mutexsem(), which has this prototype:

APIRET APIENTRY DoscreateMutexsem(PSZ 7i¢771e,
PHMTX ha#dJe,
ULONG#flgs,
BOOL32 €.71£t);

All of the parameters are similar to those in the DoscreateEventsem() API
function described in the previous section. The 7i¢7#c parameter is a null
terminated string naming the semaphore, and must be prefixed by
"\SEM32\". The handle of the semaphore will be returned in fe¢7idJc. The

#flgs parameter sets the attributes, and the z.7tz.i parameter sets the initial
state of the semaphore, in this case, ozu7zcd or L£7iozt77icd.

After creating a mutex semaphore, ownership can be requested and
released by different threads and processes. To request ownership of a
mutex semaphore, use the DosRequestMutexsem() function. The proto-
type is shown here:

APIRET APIENIRY DosRequestMutexsem(I"TX ha7idJc,
ULONG f£.77ieo#£);

Here, fefl77dJc is the semaphore handle, and fz.777co#f is the amount of time in
milliseconds to wait for the semaphore. Requesting a mutex semaphore is
much like waiting for an event semaphore, but the difference is that a
mutex semaphore is owned by only one thread or process at a time, even
if more than one thread or process is waiting for the semaphore.

After finishing with the mutuauy exclusive access, the semaphore
should be released, so that other threads or processes waiting for the
semaphore can have access to the resource being controlled by the sema-
phore. To release a mutex semaphore, the DosReleaseMutexsem() func-
tion is called. The prototype is shown here:

APIRET APIENTRY DosReleaseMutexsem(I"TX ho7idJe);

The parameter fe¢7zdJc is the handle of the semaphore to be released.

A MUTEX SEMAPHORE EXAMPLE
The following program creates a mutex semaphore caued seml and

executes two child threads that will treat the DosBeep() function as a

222 0S/22.0 programming
Chapter 10

shared resource, using the mutex semaphore to call the function synchro-
nously. The main thread waits for both child processes to end by also
requesting access to the mutex semaphore. The child processes request use
of the shared resource by requesting ownership of the mutex semaphore.

It is DosRequestMutexsem() that enables a program to sequence
access to a shared resource. The basic method of operation is to put a call
to DosRequestMutexsem() at the beginning of any code that accesses a
shared resource. This way, the code will only execute when it has
control of the resource. At the end of this code, put a call to
DosReleaseMutexsem() to release the semaphore. The code that lies
between the call to DosRequestMutexsem() and DosReleaseMutex-
Sem() is often referred to as a c7`z.£1.c¢Z scc££.o71. This general approach
is shown here:

/* This program creates two threads which will treat the
DosBeep() function as a shared resource by using a mutex
semaphore. The main thread will use the same mutex
semaphore to wait for the child threads to end.

*/

#def ine INCL DOSPROCESS
#def ine INCL DOSSEMAPHORES

#include <os2.h>
#include <stdio.h>
#include <string.h>

VOID EXPENTRY threadl (ULONG) ;
VOID EXPENTRY thread2 (ULONG) ;

HMTX handlel;
UCHAR semi [16] ;
TID tid;

main ()
(

/* Create a mutex semaphores, initially set */
strcpy(semi, "\\SEM32\\SEM1");
DoscreateMutexsem(semi, &handlel, 0, 0);

/* Start two threads */
DoscreateThread(&tid, threadl, 0, 0, 4096);

Serialization and Inter-process communication 223
Chapter 10

DoscreateThread(&tid, thread2, 0, 0, 4096);

printf ("This is the main thread.\n") ;
printf ("thread 1 beeps low, thread 2 beeps high.\n") ;
printf ("The child threads are running, wait.\n") ;

/* Wait for the mutex semaphore. */
DosRequestMutexsem (handlel , SEM_INDEFINITE_WAIT) ;

/* Release the mutex semaphore. */
DosReleaseMutexsem (handlel) ;

DosExit(EXIT_PROCESS, 0) ;
)

VOID EXPENTRY threadl (ULONG unused)
(

/* Wait for the mutex semaphore. */
DosRequestMutexsem (handlel , SEM_INDEFINITE_WAIT) ;

DosBeep(400, 400);

/* Release the mutex semaphore. */
DosReleaseMutexsem (handlel) ;

)

VOID EXPENTRY thread2 (ULONG unused)
(

/* Wait for the mutex semaphore. */
DosRequestMutexsem(handlel , SEM_INDEFINITE_WAIT) ;
DosBeep(700, 700);

/* Release the mutex semaphore. */
DosReleaseMutexsem (handlel) ;

)

A process that creates a semaphore is said to own it. When the process that
owns a semaphore terminates, the semaphore is automatically closed.
However, your program can explicitly close a semaphore. To close a mutex
semaphore, use the API function DoscloseMutexsem(). Its prototype is
shorn here:

APIRET APIENTRY DoscloseMutexsem(I"TX fe¢7idJe);

224 0S/22.0 programming
Chapter 10

Here, Jz¢77dJc is the handle of the semaphore that is to be closed. There are
also similar functions to close event semaphores and muxwait sema-
phores. All of the close functions take one parameter: the handle to the
semaphore.

As with event semaphores, for a second process to access a mutex
semaphore it must first open it using DosopenMutexsem(), which has
this prototype:

APIRET APIENTRY DosopenMutexsem(PSZ 7i¢7#c,
pl"Tx ha7idzc);

The parameters are the same as in the event semaphore: 7i¢"e is the name
of the semaphore, and fe¢7idzc will contain the handle of the opened sema-
phore.

MUXWAIT SEMAPHORES

Now that you know how the two basic types of semaphores are main-
tained, it is time to see how to use combinations of semaphores to serialize
access to a shared resource. The example that we will develop iuustrates a
very common situation found in multitasking programs: one task produces
something that a second task consumes. This is often called a prod#cer-
co7zs#77tcrrelatiouship.Thekeyproblemintasksthathavethisrelatioushipis
that the consumer must wait until the producer has finished producing
whatever it is that it produces before the consumer takes it. You do not want
the consumer taking a half-created object. Serialization of producer and
consumer tasks is achieved through the use of semaphores.

To accomplish complex synchronization, OS/ 2 provides the muxwait
semaphores. These semaphores auow you to combine one or more event
or mutex semaphores into one semaphore. This one semaphore can be
used to wait for one member of a list of semaphores, or to wait for all of
the semaphores on the list. This makes the muxwait semaphores very
powerful and flexible.

To create a muxwait semaphore, the DoscreateMuxwaitsem() func-
tion is used. The prototype is shown here:

Serialization and Inter-process communication 225
Chapter 10

APIRET APIEP\ITRY DoscreateMurwaitsem(PSZ 7t¢777c,
PI"UX J!"7tdJc,
ULONG co#77f,
PSEMRECORD 7'cc,
ULONGfl¢gs);

Here, the 7i¢77tc and fe¢7tdJc parameters are similar to those in the other
semaphore create calls. That is, 7i¢777c is a string that holds the name of the
semaphore, and fe¢7tdJc holds the handle of the semaphore. The third
parameter, co#7t£, holds the number of entries in rcc, which is a pointer to
an array of semaphore records. Thefl¢gs parameter specifies the attributes
of the semaphore. If fl¢gs is initialized to DCMW_WAIT_ANY, then the
muxwaitsemaphoreisclearedwheneveranyoneoftheeventsemaphores
in the list are posted or any one of the mutex semaphores in the list are
released. Iffl¢gs is initialized to DCMW_WAIT_ALL, then all of the event
semaphores in the list need to be posted, or all of the mutex semaphores
in the list need to be cleared, for the muxwait semaphore to clear.

After the creation of a muxwait semaphore, a program calls
DoswaitMuxwaitsem() to wait (if necessary) for the specified sema-
phores to be cleared or posted. The prototype for this function is shown
here:

APIRET APIENTRY DoswaitMurwaltsem(HMUX fe¢7tdJc,
ULONG £€.77£eot/ f,
PULONG I/scr);

Here, fe¢7tdJc is the handle of the muxwait semaphore to wait for, and
f!.7#cot/i is the number of miuiseconds to wait. The last parameter, #sc7`, will
contain the handle of a semaphore. The semaphore handle that #scr
containsisdependentonthetypeofmuxwaitsemaphorethatwascreated.
If the muxwait semaphore was waiting for any one of the listed sema-
phores,thenthehandleofthefirstsemaphoretobereleasedorpostedwfll
be returned in #scr. If the semaphore was designated to wait for all of the
semaphores, then the handle of the last semaphore to get posted or
released is returned in #sc7i

A MUXWAIT SEMAPHOPE EXAMPLE
To illustrate the use of a muxwait semaphore, a producer-consumer

situation will be developed in a short program that creates two threads
called, appropriately, producer and consumer. The producer will create a

226 0S/22.0 programming
Chapter 10

string in two steps. The central issue here is that the memory storing the
string is a shared resource, and we want to insure that only one task at a
time is accessing it.

The program shown here uses two event semaphores called semi and
sem2 to control access to an array. The two semaphores will be combined
into a muxwait semaphore to control access to the string until it is
complete.

/* This program creates two event semaphores which will
control the building and printing of a string. The
semaphores are used separately and together in a muxwait
semaphore. The main thread will use the muxwait semaphore
to wait for the child threads to build a string.

*/

#def ine INCL DOSPROCESS
#def ine INCL DOSSERAPHORES

#include <os2.h>
#include <stdio.h>
#include <string.h>

VOID EXPENTRY threadl (ULONG) ;
VOID EXPENTRY thread2 (ULONG) ;

HEV handlel;
HEV handle2;
HMUX handle3 ;
UCHAR semi [16] ;
UCHAR sem2 [16] ;
UCHAR sem3 [16] ;
SEMRECORD rec [2] ;
ULONG user;
UCHAR string[32] ;
TID tid;

main ()
(

/* Create a two event semaphores, initially set */
strcpy(semi, "\\SEM32\\SEM1") ;
strcpy(sem2, "\\SEM32\\SEM2") ;
DoscreateEventsem(semi, &handlel,
DoscreateEventsem(sem2 , &handle2 ,

Serialization and Inter-process communication 227
Chapter 10

/* Create a muxwait semaphore. */
strcpy(sem3, "\\SEM32\\SEM3") ;
rec[0] .hsemcur = (PULONG) handlel;
rec[1] .hsemcur = (PULONG) handle2;
DoscreateMuxwaitsem(sem3, &handle3, 2,

rec, DCMW_WAIT_ALL) ;

/* Start two threads */
DoscreateThread(&tid, threadl, 0, 0, 4096);
DoscreateThread(&tid, thread2, 0, 0, 4096);

/* Wait for the mutex semaphore. */
DoswaitMuxwaitsem(handle3 , SEM_INDEFINITE_WAIT, &user) ;

printf("%s\n", string);

DosExit(EXIT_PROCESS, 0) ;

)

VOID EXPENTRY threadl (ULONG unused)
(

/* build f irst part of the string */
strcpy(string, "Hello, ");

/* Post the first event semaphore. */
DosPostEventsem (handlel) ;

)

VOID EXPENTRY thread2 (ULONG unused)
(

/* Wait for the first event semaphore. */
DoswaitEventsem(handlel, SEM_INDEFINITE_WAIT) ;

/* Build the second part of the string */
strcat(string, "Semaphores") ;
/* Post the second event semaphore. */
DosPostEventsem (handle2) ;

)

In this simple example, no serious harm will result if access to the shared
resource is not serialized. However, in almost all real-world applications,
lack of serialization will spell disaster. For example, failure to correctly
serialize access to the printer will cause the output of several tasks to be
intermixed.

228 0S/22.0 programming
Chapter 10

SYNCHPIONIZING CRITICAL SECTIONS OF CODE

OS/2 provides a second method of synchronizing multiple threads
within a single process that differs from semaphores. In this second
approach, your program temporarily halts the execution of all but one
thread within the process, thus preventing a shared resource from being
accessed by two different threads at the same time. The OS/2 services
DosEntercritsec() and DosExitcritsec() are used to stop and restart,
respectively,allthreadsinaprocessexcepttheonethatcallstheseservices.
Their prototypes are shown here.

APIRET APIENTRY DosEntercritsec(VOID);

APIRET APIENTRY DosExitcritsec(VOID);

Neither service takes a parameter.
The theory behind these services is that there is a (typically) short

critical section of code that accesses some shared resource. To insure that
the critical section is safe from interruption, DosEntercritsec() is called at
the beginning of the code, suspending all other threads. When the critical
section has ended, DosExitcritsec() is called, restarting all other threads.
This general approach is shown here:

DosEntercritsec () ;

/* critical section code is put here */

DosExitcritsec () ;

Keep in mind that there can be several places in your program where
DosEntercritsec() is called. Because it suspends the execution of all
threads, except the caller, there is no chance that a second thread will call
DosEntercritsec() when the first is in a critical section.

This program shows how DosEntercritsec() and DosExitcritsec()
work. Here, threadl suspends the execution of thread2 until it has com-
pleted. This has the effect, in this situation, of serializing the execution of
threadl and thread2, and the advantages of multitasking are lost.

/* This program demonstrates the DosEntercritsec() and
DosExitcritsec() services. Threadl will complete before

Serialization and Inter-process communication 229
Chapter 10

Thread2, because Threadl halts the execution of the other
threads in the program.

*/

#def ine INCL DOSPROCESS
#def ine INCL DOSSEMAPHORES

#include <os2.h>
#include <stdio.h>
#include <string.h>

VOID EXPENTRY threadl (ULONG) ;
VOID EXPENTRY thread2 (ULONG) ;

HEV handlel;
HEV handle2;
HMUX handle3 ;
UCHAR semi [16] ;
UCHAR sem2 [16] ;

UCHAR sem3 [16] ;

SEMRECORD rec [2] ;
ULONG user;
TID tid;

main ()
(

/* Create a two event semaphores, initially set */
strcpy(semi, "\\SEM32\\SEM1");
strcpy(sem2, "\\SEM32\\SEM2") ;
DoscreateEventsem(semi, &handlel,
DoscreateEventsem(sem2 , &handle2 ,

/* Create a muxwait semaphore. */
strcpy(sem3, "\\SEM32\\SEM3");
rec[0] .hsemcur = (PULONG) handlel;
rec[1] .hsemcur = (PULONG) handle2;
DoscreateMuxwaitsem(sem3, &handle3, 2,

rec, DCMW_WAIT_ALL) ;

/* Start the two threads */
DoscreateThread(&tid, threadl, 0, 0, 4096),.
DoscreateThread(&tid, thread2, 0, 0, 4096);

/* Wait for the semaphore to quit. */
DoswaitMuxwaitsem(handle3 , SEM_INDEFINITE_WAIT, &user) ;

230 0S/22.0 programming
Chapter 10

DosExit(EXIT_PROCESS, 0) ;
)

VOID EXPENTRY threadl (ULONG unused)
(

int i;

DosEntercritsec () ;
for(i=0; i<100; i++)

printf("thread 1(%d)\n", i);
DosExitcritsec () ;

/* Post the first event semaphore. */
DosPostEventsem (handlel) ;

)

VOID EXPENTRY thread2 (ULONG unused)
(

int i;

for(i=0; i<100; i++)

printf("thread 2(%d)\n", i);

/* Post the second event semaphore. */
DosPostEventsem (handle2) ;

)

Generally speaking you win want the critical section code to be as short as
possible, so that the rest of the threads do not remain idle for extended
periods of time.

I: _-:-_ _:_

Caution: For the vast majority of situations, you
shouldusesemaphorestosynchronizemultipletasks,not
DosEntercritsec(). The reason for this is qulte simple:

DosEntercritsec() stops all threads in the process, whether they
need to be stopped or not. This degrades the total performance of
your program. The critical section services are in OS/2 for those
special situations in which you want to stop the execution of au
other threads for a reason, such as a catastrophic error. They should
not become your main method of serializing tasks.

Serialization and Inter-process communication 231
Chapter 10

INTER.PPIOCESS COMMUNICATION

As you saw earlier in this chapter, semaphores allow one process to
communicate with another process, mostly to achieve some form of
synchronized activity. However, OS/2 supports three other forms of
inter-process communication (IPC). These are shared memory, pipes,
and queues. This section takes a look at two of these: shared memory
and pipes.

SHAPIED MEMORY
By default, the memory used by one process is logically separate from

that used by another. (OS/2 might actually use the same piece of memory
for two or more processes because of swapping, but from a logical point
of view,neitherprogramcanactuallytouchanother'smemory.)However,
youcancreateasharedblockofmemorywhichtwoormoreprocessescan
access and use to exchange information. Of all the OS/2 IPC methods,
shared memory is the most flexible, because it gives you total control of
both form and content of the information being shared. However, this
freedom comes at a price: it is up to your programs to manuany handle
the data interchanges.

To allocate a segment of shared memory, use the DosAllocshared-
Mem() function. Its prototype is shown here:

APIRET APIENTRY DosAllocsharedMem(PPVOID address,
PSZ name,
ULONG sz.zc,
ULONGfl¢gs);

The pointer to the allocated memory is placed into ¢ddrcss. The
optional name of the shared memory is specified by 7t¢777c, which
must be preceded by the string "\SHAREMEM\". The value of s!.zc
specifies the size of the block in bytes. The size allocated is rounded
up to the next page size boundary. Thefl¢gs parameter specifies the
attributes for the shared memory. The attributes forfl¢gs include the
values listed in Table 10-2.

232 0S/22.Oprogramming
Chapter 10

Macro

FAG READ
FAG WRITE
FAG EXECUTE
PAG GUARD
FAG COMMIT
OBJ_TILE

OBT_GETTABLE

OBT_GIVEABLE

TABLE 10-2

Description

Memory has read access
Memory has write access
Memory has execute access
Access to memory is guarded
Memory is initially committed
Allocate in first 512MB of memory
Allow access from other processes
Memory can be given to processes

Attribute Flags for Shared Memory Accesses

For another process to obtain access to shared memory auocated by
another process, it must call DosGetNamedsharedMem(), which has this
prototype:

APIRET APIENTRY DosGetNamedsharedMem(PVOID flddress,
PSZ name,
ULONGfl¢gs);

Here, ¢ddrcss will hold the base address of the shared memory object. The
71fl77€c parameter is the name of the desired shared memory, and it must
matchthenameusedwhenthememorywasallocated.Theparameterfl¢gs
must be at least one of the following: PAG_READ, PAG_WRITE, FAG_EX-
ECUTE, or FAG GUARD, as described in Table 10-2.

The following program allocates a shared memory object called
MEM1, writes a string to it, and then executes a child process, caued
SHRTEST, which reads the string from the shared memory and displays it
on the screen.

/* This program writes a string into shared memory and
then executes a child process. The child
process reads the string f rom the shared memory
and displays it on the screen.

*/

Serialization and Inter-process communication 233
Chapter 10

#def ine INCL DOSMEMMGR
#def ine INCL DOSPROCESS

#include <os2.h>
#include <stdio.h>
#include <bsememf .h>

main ()
(

UCHAR fail [128] ,.
RESULTCODES result;
PBYTE address;

/* allocate some unnamed shared memory */
if (DosAllocsharedMem((PPVOID) &address, " \\SHAREMEM\\MEM1" ,

1000, PAG_WRITE I PAG_COMMIT))

(

printf ("allocation of shared memory failed\n") ;
DosExit(EXIT_PROCESS,1) ;

)

/* put a string into' shared memory */
strcpy(address, "This is a test of shared memory."),.

/* Execute the child process, wait for termination. */
if (DosExecpgm(fail,128, EXEC_SYNC, NULL, NULL,

&result , " SHRTEST . EXE "))
(

printf ("DosExec failed") ;
DosExit(EXIT_PROCESS,1) ;

)

DosExit (EXIT_PROCESS, 0) ,.
)

The SHRTEST program is shown here:

/* Read a string from shared memory and print it
to the screen.

*/

#def ine INCL DOSMEMMGR

#include <os2.h>
#include <stdio.h>

234 0S/22.0 programming
Chapter 10

#include <bsememf .h>
main ()
(

HEV handle;
PBYTE address;

i f (DosGetNamedsharedMem ((PPVOID) &addres s ,
"\\SHAREMEM\\MEM1" , PAG_READ))

(

printf ("error obtaining shared memory. \n") ;
DosExit(EXIT_PROCESS,1) ;

)

printf("%s \n", address);

DosExit(EXIT_PROCESS, 0) ;

)

Even though these sample programs use shared memory for character
string data, you can use shared memory to hold any types of objects you
desire.

There is one very important thing to remember about using shared
memory: you must be sure to allocate enough to hold the largest object
you wish to put into it. If your program tries to write past the end of the
allocated memory, a memory protection fault will be generated, causing
the process to terminate.

PIPES

OS/2letstwoprocessescommunicatewitheachotherviaap€.pc,which
is a special type of file maintained by the operating system. Chce the pipe
has been created, routines read and write to and from the pipe using the
standard DosRead() and Doswrite() file I/O services. These and other I/ O
functions are covered thoroughly in Chapter 11.

To create a pipe, use DoscreateNpipe(), which has the prototype
shorn here:

APIRET APIENTRY DoscreateNpipe(PSZ ft¢77te,
pHplpE fe¢#dzc,

Serialization and Inter-process communication 235
Chapter 10

ULONG offlodc,
ULONG p777odc,
ULONG o# £sz.zc,
ULONG z.71s2.zc,
ULONG £€.7#eo%£);

Here, 77¢r#c is the name of the pipe, and must be preceded by the string
"\PIPE\". The variable pointed to by fe¢7idzc receives the handle for the

pipe. The o77zodc parameter holds the attributes for the open mode. Table
10-3 is a list of the flags that can be combined to create the desired mode.

The p77zodc parameter is related to the o777odc parameter, but controls
the mode of the pipe. It too holds a set of flags, but is complicated by the
fact that the first 8 bits hold the number of instances to allow. This can be
sinply set to NP_UNLIMITED_INSTANCES, unless you need to control
the number of accesses to the pipe. The important flag settings are listed
in Table 10-4.

Theparameterso#£s!.zcandi.7isz.zctellthesystemhowlargetomakethe
inbound and outbound buffers of the pipe. The fz.77zco#£ parameter is used
only when the first instance of this named pipe is being created. If this
parameter is set to 0, the system wide default is used.

Macro

NP ACCESS INBOUND
NP ACCESS OUTBOUND
NP ACCESS DUPLEX
NP INHERIT
NP NOINIERIT
NP WRITEBEHIND

NP Nol/VRITEBEHIND

TABLE 10-3

Value Description

OxOOOO Inbound access (default)

OxOool Outbound access

Ox0002 In/Outbound access
OxOOOO Child inherits (default)

OxOO80 Cannot be inherited

OxOOOO Writes to remote pipes may
be buffered by system
(default)

Ox4000 Remote pipes are written to
immediately

Macros Used for Open Mode

236 0S/2 2.0 programming
Chapter 10

Macro Val ue Description

NP UNLIMITED INSTANCES 0xOOFF
NP READMODE BYTE 0xOOOO

NP READMODE MESSAGE 0xO100

NP TYPE BYTE 0xOOOO

NP TYPE MESSAGE 0x0400
NP WAIT
NP NOWAIT

TABLE 10-4

Unlimited instances
Byte read mode (default)
Message read mode
Byte pipe type (default)
Message pipe type

OxOOOO Walt onl/O (default)

Ox8000 Nowaitonl/O

Macros Used for Pipe Mode

Pipes are very easy to use for communication, but there is one more
step to the process before pipes can be used. The process that creates the
pipe must call DosconnectNpipe() to allow access to the pipe. The proto-
type is shorn here:

APIRET APIENTRY DoscormectNpipe(HPIPE ha7tdJe);

Theparameterfe¢7zdJcisthehandleofthepipetoconnect.Thisisthehandle
that was returned by the call to DoscreateNpipe(). Without this call, the
pipe cannot be accessed either by the creator of the pipe, or by other
processes. A call to DosconnectNpipe() puts the pipe into a listening
mode. After this call, the process that created the call can begin communi-
cating, using the DosRead() and Doswrite() services. Other processes can
also communicate through the pipe with these same services, but must
first gain access to the pipe through a call to Dosopen(). For more
information on these file I/0 API services, see Chapter 11 of this book.

After finishing with the current communication, the pipe can be dis-
connected with a call to DosDisconnectNpipe(). The prototype for this
function is shown here:

APIRET APIENTRY Dos"scormectNpipe(HPIPE fe¢7tdJc);

Again, fe¢7tdJc is the handie of the pipe, the handle which was returned by
thecalltoDoscreateNpipe(),andusedinthecalltoconnectthepipe.After

Serialization and Inter-process communication 237
Chapter 10

disconnecting a pipe, it can again be used to communicate, if it is put back
into listing mode with another call to DosconnectNpipe().

A Pipe Example Program
The following program creates a pipe and prepares it for access. While

this is happening, a child process is opening the pipe and waiting to read
from it. When the parent process writes a string to the pipe, the child
process reads it and displays it on the screen.

/* This program opens a pipe and writes a string
into the pipe. A child process opens the pipe and
reads in the string, then displays it on the screen.

*/

#def ine INCL DOSNMPIPES
#def ine INCL DOSFILEMGR
#def ine INCL DOSPROCESS

#include <os2.h>
#include <stdio.h>

main ()
(

UCHAR fail[128] ;
RESULTCODES result;
HPIPE handle;
ULONG written;

/* create a named pipe */
if (DoscreateNpipe("\\PIPE\\PIPE1", &handle,

NP_ACC E S S_OUTBOUND ,
NP_UNLIMITED INSTANCES ,
255, 255, 0))

(

printf ("Pipe creation failed.\n");
DosExit(EXIT_PROCESS,1) ;

)

/* Start up a child process */
if (DosExecpgm(fail,128, EXEC_ASYNC, NULL, NULL,

&result , " PIPETEST . EXE "))
(

printf ("DosExec failed") ;

238 0S/22.0 programming
Chapter 10

DosExit(EXIT_PROCESS,1) ;
)

/* Put the pipe into listing mode. */
if (DosconnectNpipe (handle))
(

printf ("Conection failed") ;
DosExit(EXIT_PROCESS,1) ;

)

/* Write a string into the pipe. */
if (Doswrite(handle, "Hello from the parent",

21, &written))
(

printf ("Doswrite failed") ;
DosExit(EXIT_PROCESS,1) ;

)

DosExit (EXIT_PROCESS, 0) ;
)

Enter this second program and name it PIPETEST.C. This will allow
the parent process to call the program through the DosExecpgm() func-
tion, which expects the child program to be named PIPETEST.EXE.

/* Read a string from a pipe and print it to the screen. */

#def ine INCL DOSNMPIPES
#def ine INCL DOSFILEMGR

#include <os2.h>
#include <stdio.h>

main ()
(

HPIPE handle;
ULONG action;
UCHAR buff [32] ;
ULONG read;

/* Open the pipe */
if (Dosopen("\\PIPE\\PIPE1", &handle, &action, 0,

FILE_READONLY, OPEN_ACTION_OPEN IF EXISTS,
OPEN ACCESS READONLY I OPEN_SHARE_DENYNONE, 0))

(

Serialization and Inter-process communication 239
Chapter 10

printf ("error opening pipe. \n") ,.
DosExit(EXIT_PROCESS,1) ;

)

/* Read from the pipe. */
if(DosRead(handle, buff, 32, &read))
(

printf ("error reading pipe\n") ;
DosExit (EXIT_PROCESS,1) ;

)

/* Now null terminate the string and print it out. */
buff[read] = '\0';
printf ("String received through the pipe: %s \n", buff) ;

)

JUST A SCRATCH ON THE SUPIFACE
This and the previous chapter have introduced you to the most im-

portant and fundamental aspects of OS/2's multitasking capabilities. But
we have only scratched the surface of the multitasking environlnent
providedbyos/2.Itisnotenoughjusttoknowhowtousetheappropriate
OS/2 services to create a multithread or multiprocess application. You
must leam to use multitasking effectively. The two reasons you will want
to use multitasking are to increase the performance of your program, and
to prevent the user from being idle while your program performs some
lengthy task. While it is beyond the scope of this book to discuss the
various theories and approaches to writing multitasking applications, you
should give much thought to how both data and execution flow through
yourprogram,lookingfordiscretetasksthatcanbeconcurrentlyexecuted.
With a little practice, this process will become second nature.

CHAPTER

mlLE I/o

The OS/2 file I/0 subsystem is amazingly straightforward and
provides a very efficient means of accessing disk files as well as
other devices. At its core are four services: Dosopen(), DosRead(),
Doswrite(),andDosclose().Ifyouarefamiliarwithc'sunbuffered
I/0system,youwfllbepleasedtoleamthattheseservicesparallel
open(), read(), write(), and close(). In fact, many of the file services
aresimilartoC1/0functious.Evenifyouareunfamiliarwiththese
C functions, the OS/2 file system is very easy to learn and use.

The OS/2 file I/0 services are shown in Table 11-1 along with
a short description of each. Notice that all of the functions begin
with the prefix Dos.

As has been the case with many of the OS/2 services, the OS/2
file system closely parallels the C file system. For most low-perfor-
mance applications you will probably want to use the C file I/0
functions, because they are more portable and, in a few cases,
slightlyeasiertouse.However,forhigh-performanceor,depending
upontheactualimplementationofyourCcompiler,formultithread
applications, you should rely on the OS/2 file services.

Cine final point: OS/2 provides the capability to directly access
thedisk,bypassingthedisk'slogicalstructure.However,thisdirect
controlofthediskhardwareisatopicbeyondthescopeofthisbook.

242 0S/22.0 programming
Chapter 11

In general, you would only want to access the disk directly when creating
special disk utility programs, such as a file recovery program, not for
general programming tasks.

Service

DosResetBuffer()

DossetcurrentDir()
DossetFileptr()
Dosclose()
DosDelete()

DosDupHandle()
DossetFileLocks()

DosFindclose()
DosFindFirst()

DosFindNext()

DoscreateDir()
DosMove()

DossetFilesize()
Dosopen()
DosQueryFsinfo()
DosQuerycurrentDir()

DosQuerycurrentDisk()
DosQueryFHstate()
DosQueryFilelnfo()
DosQuerysyslnfo()
DosQueryFslnfo()

TABLE 1111

Function

Flushes the buffers associated with a file
Changes the current directory
Changes the location of the file pointer
Closes a file

Deletes a file

Duplicates a file handle
Locks a file

Closes a directory search file handle
Finds the first file in the directory that
matches the specified filename
Finds the next file in the directory that
matches the specified filename
Makes a subdirectory
Rename a file
Resizes a file

Opens a file
Returns information about the disk system
Returns information about the current
directory
Returns information about the current disk
Returns information about a handle
Returns information about a file
Returns information about a file's mode
Returns information about the file system

File I/0 Subsystem Services

Filel/0 243
Chapter 11

Service

DosQueryHType()
DosQueryverify()
DosRead()

DosDeleteDir()
DosscanEnv()
Dossearchpath()
DossetDefaultDisk()
DossetFHstate()
DossetFilelnfo()
DosCopy()

DossetFslnfo()
DossetMaxFH()
Dossetverify()
Doswrite

TABLE 11 -1

Function

Returns a handle's type
Returns the state of the verify flag
Reads data from a file
Removes a subdirectory
Looks for a specified environmental variable
Searches for a filename, given a path
Changes the default drive
Sets a file handle's state
Changes information associated with a file
Copies a file or directory
Changes the file system information
Sets the maximum number of file handles
Changes the state of the verify flag
Writes data to a file

File I/0 Subsystem Services (continued)

FILE HANDLES

The OS/2 file subsystem operates on files via a file's handle, which is
obtained when the file is first opened. A file handle, like all other OS/2
handles, is a 32-bit value. You must obtain a valid file handle before
attempting to use any of the file I/ 0 services. The handle is obtained either
through a successful call to Dosopen() or by using one of the built-in
handles discussed later.

244.OS/2 2.0 Programmng
Chapter 11

FILE POINTERS

All open disk files have associated with them a¢.Jc pot.7tfcr, which is
usedtokeeptrackofthelocationinthefilethatiscurrentlybeingaccessed.
The file pointer is automatically maintained by OS/2 when read or write
operations occur. For example, if a file is 100 bytes long and your program
has just read the first 50 bytes, then the value of the file pointer is 50. It is
also possible for your program to set the value of the file pointer in order
to reach a specific point in the file.

OPENING AND CLOSING FILES

Before you can access a file, you must obtain a handle to it. To do this,
use the Dosopen() service, the prototype of which is shown here:

APIRET APIENIRY Dosopen(Psz f.Je71fl77tc,
PHFILE¢7tdJe,
PULONG ¢c£€.o7t,
ULONG sz.zc,
ULONG ¢££7',
UTJONG openf oags ,
ULONG fflodc,
PEAOP2 op2);

Here, ¢.Jc#¢777c must be a null terminated string that contains a valid
path and filename for the file to be opened. The#¢77dJc parameter points
to the integer that will contain the file's handle upon return from a
successful call.

Theflcfz.o71parameterpointstoavaluewhichholdstheactiontakenby
asuccessfulDosopen().Ifthecallfailed,thevaluepointedtoby¢c£€.o7ihas
no meaning. The value that ¢cf!.o# points to will be one of these:

Macro Value Meaning

FILE EXISTED 0xOool File was existent

FILE CREATED 0x0002 File was created

FILE TRUNCATED 0x0003 File length was truncated

Filel/0 245
Chapter 11

The s{.zc parameter specifies an initial length, in bytes, for a new or
truncated file. This value may be 0. This parameter has no effect on a file
that is opened for read operations.

The value of the ¢£fr parameter determines a file's attributes. It only
applies to newly created files. The value of ¢#r can be any vahd combina-
tion of the fonowing:

Macro

FILE NORRAL
FILE READONLY
FILE HIDDEN
FILE SYSTEM

FILE DIRECTORY

FILE ARCENED

Value Type of File

OxOOOO normal

OxOoo 1 read-only

Ox0002 hidden

Ox0004 system

oxool 0 directory
Ox0020 archived

The value of the apc7tfl¢gs parameter determines what action
Dosopen() takes, depending upon whether the specified file exists or not.
Its value can be a combination of the values shown here:

Macro Val ue Action

OPEN ACTION FAIL IF EXISTS 0xOOOO Open file, fail if
the file already
exists

OPEN ACTION OPEN IF EXISTS 0xOool Openfileifit
exists, fail if it
does not

OPEN ACTION REPLACE IF EXISTS 0x0002 0penfile, replace
it if it exists

OPEN ACTION CREATE IF NEW 0xOO10 Open file, create if
it does not exist

The value of the 771odc parameter must specify the access mode as well
as the share mode of a file that is being created. As you probably know, all
files may be accessed one of three different ways: read-only, write-only, or
read /write. For a single-tasking operating system, these access codes fully
describe how the files may be accessed. However, in OS/2, a multitasking
system, the access mode of a file is not sufficient to fully describe the file,

246 0S/22.0 programming
Chapter 11

because it does not take into account the possibility of two or more
processes attempting to access the file at the same time. To handle this
situation, all OS/2 files also have associated with them a shore attribute,
which is one of the following:

Share Attribute Meaning

Deny write-share Only the process that opened the file may
write to it, but other processes may read
from it.

Deny read-share Cinly the process that opened the file may
read from it, but other processes may write
to it.

Deny read/write-share Cinly the process that opened the file may
read or write to the file; all other processes
are barred access.

Deny-none Any process may access the file at any
time, in any way.

In addition to the access and file sharing specifics, OS/2 lets you
controlafewthingsaboutthewaythefilesystemoperates.Youcancontrol
the setting of the inheritance flag, which determines whether a child
process inherits a file handle from the parent. You can tell the file system
toretumalll/Oerrorstothecallingroutineinsteadoftothesystemcritical
error routine. You can tell 0S/2 that you do not want write operations to
return until the information being written is actually put on the physical
device instead of simply written to a buffer. Finally, you can tell 0S/2 that
the drive is being accessed directly on a sector by sector basis, bypassing
the disk's logical structure.

The values for the access, file sharing, and miscellaneous flag settings
are shown in Table 11-2. You combine the attributes to create the value
desired for the 777odc parameter. To combine the values, simply OR them
together.

Thelastparameterisusedtopasstheaddressoftheextendedattribute
buffer. For most file operations, including the examples in this book, this
value will be 0, meaning that no extended attributes will be defined.

When the file is first opened, the file pointer is set to the beginning of
the file and has the value of 0.

Unless the write-to-device flag has been set, the OS/2 file system
writes output to a buffer, not to the actual physical file, until that buffer is

Filel/0 247
Chapter 11

Macro

OPEN ACCESS READONLY
OPEN ACCESS WRITEONIY
OPEN ACCESS READWRITE

Value Meaning

OxOOOO Read-only file

OxOool Write-only file

Ox0002 Read/write file

OPEN SHARE DENYREADWRITE 0xOO10 Deny read/write
sharing

OPEN SHARE DENYWRITE
OPEN SHARE DENYREAD
OPEN SIIARE DENYNONE

OPEN FLAGS NOINIIERIT

OPEN FLAGS_SEQUENTIAL
OPEN FLAGS RANDOM

OPEN FLAGS NO CACHE

Ox0020 Denywrite sharing
Ox0030 Denyread sharing
Ox0040 No access denied

OxOO80 Filehandlesnot

passed on to child
process

OxO100 Sequential access

Ox0200 Random access

Oxl000 0utputnotputin
cache

OPEN FLAGS FAIL ON ERROR 0x2000 Reporterrorsto
caller

OPEN FLAGS WRITE THROUGH 0x4000 Donotretumuntil
the information is
written to device

OPEN FLAGS DASD

TABLE 1112

Ox8000 Signals the system
that direct device
access will take
place

File Mode Values

248.OS/2 2.0 Programming
Chapter 11

full. As you may know, virtually all operating systems buffer disk input
andoutputbyevenmultiplesofasector.Forexample,whenyourprogram
requestsinformation,thefilesystemautomaticallyreadsafullsector,even
if only a partial sector is needed. Subsequent sequential read requests can
then obtain information from the buffer without waiting for disk access.
The same happens on output: data is buffered until a fun sector can be
written to disk, thus bypassing a number of time-cousun.ing disk write
operations, each of which would write just a few bytes. The buffered
method is used to improve performance and is not unique to OS/2.
However,youmustinsurethatthecontentsofthebufferhavebeenwritten
to the file before your program terminates, or before the handle associated
with that file is destroyed. Also, there are a finite number of file handles
available in the file system (20 by default), so there needs to be some way
to release a file handle for reuse when you are done with a file. To
accomphsh these goals OS/2 provides the Dosclose() service, whose
prototype is shown here:

APIRET APIENTRY Dosclose(HFILE #¢7idJc);

where#¢7zdzc must be a previously acquired file handle.
Before any meaningful examples can be developed using Dosopen()

and Dosclose(), you need to leam about Doswrite(), the subject of the
next section.

WRITING TO A FILE

To write information to a file, use the Doswrite() service, whose
prototype is shown here:

APIRET APIENTRY Doswrite(HFILE ¢71dJc,
PVOID b"/,
ULONG cot4#£,
PUT:ONG num_bytes_written) ;

The #¢71dJc parameter must be a valid, previously obtained file
handle. The region pointed to by bt//holds the information that will be
written to the file. The co#77£ parameter specifies the length of the buffer,

Filel/0 249
Chapter 11

ormoreproperly,thenumberofbytesinthebufferthatshouldbewritten
tothefile.Finally,the##ffl_byfcs_zurz.££c#parameterpointstoavaluethat
holds the number of bytes actually written upon return from the call. If
an error occurs and it is not possible to write all the bytes requested,
then the value returned in 71#77t_byfcs_z"!.£fc77 will be different from
the number requested.

OS/2fileoperatiousarebinaryinnatureandnocharactertrauslations
takeplace.(Whatyouwriteiswhatyouget!)Also,thefilesystemperforms
noformattingandisbyte-oriented.Thatis,ifyouwishtowritedataother
than characters, you must treat the data as a group of bytes. For example,
there is no OS/2 service that writes floats directly. (You will see how to
write other types of data later in this chapter.)

Each time you write to the file, the file's file pointer is automatically
advanced by the number of bytes written.

A SIMPLE FIRST EXAMPLE

To see how Dosopen(), Doswrite(), and Dosclose() work together,
examine the following program, which creates a new disk file caued
TEST.TST and writes the line "Hello OS/2 World!" to it. (Make sure a file
named TEST.TST does not already exist.)

/* This program writes output to a disk file.
If the file exists, the open will fail.*/

#def ine INCL_DOS

#include <os2.h>
#include <stdio.h>

main ()
(

ULONG fh;
ULONG action;
ULONG count;
CHAR buf [80] ;

strcpy(buf, "Hello, OS/2 World!");

250.OS/2 2.0 Programmng
Chapter 11

/* create the file, no file sharing */
if (Dosopen("test.tst", /* filename */

&fh, /* pointer to handle */
&action, /* pointer to result */
0, /* initial length */
FILE_NORIAL,/* normal file */
OPEN_ACTION CREATE IF NEW I /* create file, */
OPEN_ACTION_FAIL_IF_EXISTS, /* fail if exists */
OPEN ACCESS WRITEONLY I /* write only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ,.
exit (1) ;

)

/* write a short message to it */
if(Doswrite(fh, buf, strlen(buf), &count))

printf ("error in write operation") ;

/* close the file */
if (Dosclose (fh))

printf ("error closing file") ;
)

The first time this program is run, it creates the file called TEST.TST
and writes output to it. However, if you try to run the program a second
time, you will see the error message "error in opening file". The reason this
happens is that the value of the opc7ifl¢gs parameter specifies that the file
will be created only if it does not already exist.

Notice that this program checks for error returns from Dosopen(),
Doswrite(), and Dosclose(). As you probably know, errors are very
common when dealing with files. A frequently encountered error is for-
gettingtoputadisketteintothedrive.Anotheroneisrunningoutofspace
on a disk. For these reasons, it is imperative to check for errors whenever
you open a file or write to it. (Remember that closing a file may involve a
writeoperationifabuffermustbewrittentodisk.Hence,Dosclose()must
be checked.) Unlike the screen or keyboard services in which most of the
functions are (more or less) guaranteed success, and error checking is
generally unnecessary, many of the file system services have a significant
likelihoodoffailureduetouncontrollablecircumstances.Yousimplymust
check for errors and take appropriate action if one occurs.

Filel/0 251
Chapter 11

AVARIATION
As mentioned, the program just shown will only work if the file does

not already exist. It is possible to change the value of the opc7ifl¢gs param-
eter so that the file will be opened if it already exists or created if it doesn't.
This can be accomplished by using the value Oxll. This version of the
program is shown here:

/* This program writes output to a disk file.
If the file exists, it is replaced.

*/

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

``

main ()
(

ULONG fh;
ULONG action;
ULONG count;
CHAR buf [80] ;

strcpy(buf, "Hello again, OS/2 World!");

/* create the file, no file sharing */
if (Dosopen("test.tst", /* filename */

&fh, /* pointer to handle */
&action, /* pointer to result */
0, /* initial length */
FILE_NORMAL,/* normal file */
OPEN_ACTION_CREATE_IF_NEW I /* create file, */
OPEN_ACTION_REPLACE_IF_EXISTS, /* replace */
OPEN ACCESS WRITEONLY I /* write only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ,.
exit (1) ;

)

/* write a short message to it */
if(Doswrite(fh, buf, strlen(buf), &count))

printf ("error in write operation") ;

252 0S/22.0 programming
Chapter 11

/* close the file */
if (Dosclose (fh))

printf("error closing file");
)

When you run this program it will open an existing TEST.TST file and
writethenewmessagetoit-verwritinganyexistingcontents.(Lateryou
will see how to append information to a file.) If TEST.TST does not exist,
it will be created.

READING FROM A FILE

To read information from a file, use the DosRead() service, which has
this prototype:

APIRET APIENTRY DosRead(HFILE#¢71dJc,
PVOID b"/,
ULONG co#71£,
PULONG 7t#77i_rc¢d);

The/t¢7idzc parameter is a valid, previously obtained file handle asso-
ciated with the file you wish to read from. The region pointed to by b#/
receives the information read. The value of co##£ determines how many
bytes are read from the file. The length of the buffer receiving them must
be at least co#71£ bytes in length. The value pointed to by 71t/ffl_rc¢d will
contain the number of bytes actually read after the call returns. The
number of bytes requested and the number of bytes actually read may
differ, either because the end of the file has been reached, or because an
error has occurred.

OS/2 automatically updates the file pointer after each read operation.
Asanexample,thefouowingprogramwillreadanddisplaythecontents

of a text file. You must specify the name of the file on the command line.

/* This program displays an entire file. */

#def ine INCL DOS

Filel/0 253
Chapter 11

#include <os2.h>
#include <stdio.h>

main(int argc, char *argv[])
(

HFILE fh;
ULONG action;
ULONG num_bytes ;
CHAR buf [513] ;

i f (argc ! =2)
(

printf("Usage: %s <filename>\n", argv[0]);
exit (1) ,.

)

/* open the file, no file sharing */
if(Dosopen(argv[1], /* the file to open

&fh, /* pointer to handle
&action, /* pointer to result
0, /* initial length */
FILE_NORIAL,/* normal file */
OPEN_ACTION_FAIL IF NEW I /* do not create */
OPEN_ACTION_OPEN_IF_EXISTS, /* open if exists */
OPEN ACCESS READONLY I /* read only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ;
exit (1) ;

)

do
(

if (DosRead(fh, buf, 512, &num_bytes))
(

printf ("error reading file") ;
exit (1) ,.

)

buf [num_bytes] = '\0'; /* null terminate the buffer */
printf (buf) ;

} while (num_bytes) ;

if (Dosclose (fh))

254 0S/22.0 programming
Chapter 11

printf ("error closing file");
)

As this program illustrates, the easiest way to know when you have
reached the end of the file is when the value of the ##777_kyfcs parameter
is zero. The DosRead() function does not return an EOF character.

One thing to notice about this program is that the buffer used to hold
the data is one byte longer than the number of bytes requested to be read.
Thisisbecausethebuffermustbetransformedintoanullterminatedstring
so that it can be used as a parameter to printf() . Not every application will
require this step, of course.

RANDOM ACCESS

The OS/2 file system supports byte-addressable random access
through the DossetFileptr() service, which has this prototype:

APIRET APIENTRY DossetFileptr (HFILE #¢7idze,
LOING distance,
ULONG orz.g3.7t,
PULONG Zoc);

The #¢7zdJc parameter must contain a valid, previously obtained file
handle. The DossetFileptr() service works only upon actual disk files and
cannot be used with other devices. The value of d{.s£¢71cc determines how
far, in bytes, the file pointer is to be moved relative to the origin. This is a
signed value and may be either positive or negative. The value of orz.gt.77
determines how the value of d€.s£¢71cc is interpreted, as shown here.

Macro Value

FILE BEGIN 0

FILE CURRENT 1

FILE END 2

Effect

Move specified number of
bytes from the start of the file
Move specified number of
bytes from the current location
Move specified number of
bytes from the end of the file

Filel/0 255
Chapter 11

ThevaluepointedtobyJocwillholdthecurrentvalueofthefilepointer
upon return.

The following program makes use of the DossetFileptr() service to let
youscanatextfileinboththeforwardandbackwarddirectious.Youmust
specify the name of the file on the command line. The program supports
these commands:

Command

S

E

8
F

Q

Meaning

Go to begirming of the file
Go to the end of the file
Go back 512 bytes

Go forward 512 bytes

Quit

When it begins execution the first 512 bytes of the file are shown.

/* A file browse program */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

main(int argc, char *argv[])
(

ULONG fh;
ULONG action;
ULONG mum_bytes ;
CHAR buf [513] , ch;
ULONG pos,.
LONG p;

i f (argc ! =2)
(

printf("Usage: %s <filename>\n", argv[0]);
exit (1) ;

)

/* open the file, no file sharing */
if(Dosopen(argv[1], /* the file to open *

&fh, /* pointer to handle
&action, /* pointer to result

256 0S/22.0 programming
Chapter 11

0, /* initial length */
FILE_NORRAL,/* normal file */
OPEN_ACTION_FAIL IF NEW I /* do not create */
OPEN_ACTION_OPEN_IF_EXISTS, /* open if exists */
OPEN_ACCESS_READONLY I /* read only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ;
exit (1) ;

)

/* main loop */
pOs = 0;
do
(

if (DosRead(fh, buf, 512, &num_bytes))
(

printf ("error reading file") ;
exit (1) ;

)

buf [num_bytes] = '\0'; /* null terminate the buffer */
printf (buf) ; /* display the buffer */

/* see what to do next */
ch = tolower(getc(stdin)) ;
switch(ch)
(

case 'e': /* move to end, the last 512 bytes */
DossetFileptr(fh, -512, FILE_END, &pos) ;
break;

case 's': /* move to start, the first 512 bytes */
DossetFileptr(fh, 0, FILE_BEGIN, &pos);
break;

case 'f': /* move forward */
/* forward is automatic, so no change is required */
pos += num_bytes;
break;

case 'b': /* move backward */
p = pOs -512;
if (p < 0)

p=0;
DossetFileptr(fh, p, FILE_BEGIN, &pos) ,.

)

Filel/0 257
Chapter 11

} while(ch != 'q');

if (Dosclose (fh))
printf ("error closing file") ,.

APPENDING TO A FILE

The way to add information to the end of a file is to first advance the
file pointer to the end and then begin writing the new data. To accomplish
this, you could open the file for read/write operations and read the file
untiltheendwasreached.Butthismethodisveryinefficient.Thebestway
to get to the end of the file is to use DossetFileptr() in a statement similar
to this:

DossetFileptr(fh, 0, FILE_END, &pos) ,.

This tells OS/2 to move the file pointer to the end of the file. The 2 in
the orz.gz.77 parameter and the 0 in the dz.s£¢7tcc parameter insure that the file
pointer will be at the physical end of the file.

The following program uses this method to add lines of text, entered
atthekeyboard,tothefileTEST.TST.Tostopinputtinghnes,entertheword
"quit" on a separate hne.

/* This program opens a file, reads lines from the keyboard,
and appends each line to the end of the file.

*/

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>
#include <string.h>

main ()
(

ULONG fh,.
ULONG action;
ULONG pos;
ULONG count;

258 0S/22.Oprogramming
Chapter 11

CHAR buf [513] ;

/* open the file, no file
if (Dosopen("test.tst", /*

&fh, /*
&action, /*
0,/* length
FILE_NORRAL,/* normal file */
OPEN ACTION CREATE IF NEW I /* create or */
OPEN_ACTION_OPEN_IF_EXISTS, /* open if exists */
OPEN ACCESS READWRITE I /* read/write with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ;
exit (1) ;

)

/* go to the end of the file */
DossetFileptr(fh, 0, FILE_END, &pos);

/* continue adding to the file until the word "quit" is
entered

gets (buf) ;

if(Doswrite(fh, buf, strlen(buf), &count))
printf ("error in write operation") ;

} while(stricmp("quit", buf));

/* close the file */
if (Dosclose (fh))

printf ("error closing file") ;

READING AND WRITING OTHER DATA TYPES

You can use the OS/2 file system services to read and write data types
other than characters (bytes) by treating a variable of a different type as a

Filel/0 259
Chapter 11

buffer and using its address and length in the calls to DosRead() and
Doswrite().(Remember,youcanobtainthesizeofanydatatypeusingthe
sizeof compile time operator.) For example, the following program first
writes a double to the file TEST.TST and then reads it back, displaying the
value to the screen for verification.

/* This program illustrates how to write a double value to
a f ile and read it back

*/

#def ine INCL_DOS

#include <os2.h>
#include <stdio.h>

main ()
(

ULONG fh;
ULONG action;
ULONG pos;
ULONG count;
double dbl;

/* create or overwrite a file, no file sharing */
if (Dosopen("test.tst", /* the file to open */

&fh, /* pointer to handle */
&action, /* pointer to result */
0, /* initial length */
FILE_NORMAL,/* normal file */
OPEN ACTION CREATE IF NEW I /* create or */
OPEN ACTION REPLACE IF EXISTS, /* overwrite */
OPEN ACCESS READWRITE I /* read/write with */
OPEN SHARE DENYREADWRITE, /* no sharing allowed

*/

0)) /* no extended attributes */
(

printf ("error in opening file") ;
exit (1) ;

)

dbl = 101.125;
/* write a double value to the file */
if(Doswrite(fh, &dbl, sizeof(dbl), &count))

printf ("error in write operation") ;

/* clear the dbl variable */

260.OS/2 2.0 Programming
Chapter 11

dbl = 0.0;

/* reset the file pointer to start of file */
DossetFileptr(fh, 0, FILE_BEGIN, &pos);

if(DosRead(fh, &dbl, sizeof (dbl), &count))
(

printf ("error reading f ile") ;
exit (1) ;

)

printf("%lf \n", dbl); /* print the value read in */

/* close the file */
if (Dosclose (fh))

printf ("error closing file") ,.
)

Youcanusethissamebasicapproachonmorecomplexdatatypessuch
as arrays, uhious, and structures. Just be sure that you are passing the
address of the variable to DosRead() or Doswrite(), not its actual value.

HEADING AND WPITING TO A DEVICE

The OS/2 file system lets you access certain devices as if they were
files. For example it is possible to open the console (screen and keyboard),
and then read and write to it. To open a device, you must use that device's
name in the Dosopen() call in place of a filename. The devices supported
by OS/2 are,

clocks
coml
com2
com3
com4

mouses
nul

pointers
Pm
screens

Filel/0 261
Chapter 11

Of the most interest are coml through com4, because these are the
serial communication ports, and lptl through lpt3 and pm, because these
are the printer ports.

tine thing to keep in mind is that not all devices support all modes of
operation. For example, if you open screens, you may write to the screen
butnotreadfromit.Also,asyouwillsee,diskfilessupportrandomaccess
operations, but devices do not.

Thisprogramopeusthekeyboard,readsalineoftext,anddisplaysthe
contents of the buffer.

/* This program reads input from the keyboard */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

main ()
(

ULONG fh;
ULONG action;
ULONG pos;
ULONG count;
CHAR buf [80] ;

/* open the keyboard, no sharing */
if (Dosopen("kbds", /* the keyboard */

&fh, /* pointer to handle
&action, /* pointer to result
0, /* initial length */
FILE_NORMAL, /* normal file */
OPEN ACTION CREATE IF NEW I /* create or */
OPEN_ACTION_OPEN_IF_EXISTS, /* open */
OPEN ACCESS READONLY I /* read only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing */
0)) /* no extended attributes */

printf ("error accessing the keyboard. ") ;
exit (1) ,.

if (DosRead(fh, buf, 80, &count))
printf ("error in read operation")

262 0S/22.0 programming
Chapter 11

buf [count] = '\0'; /* null terminate */
printf (buf) ;

if (Dosclose (fh))
printf ("error closing the keyboard") ;

)

The following program opens lptl and writes a message to it.

/* This program writes output to the printer */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>
#include <string.h>

main ()
(

ULONG fh;
ULONG action;
ULONG pos;
ULONG count,.
CHAR buf [80] ;

strcpy(buf, "Hello, OS/2 Printer");

/* open the printer, no sharing */
if (Dosopen("1ptl", /* the keyboard */

&fh, /* pointer to handle */
&action, /* pointer to result */
0, /* initial length */
FILE_NORMAL, /* normal file */
OPEN ACTION CREATE IF NEW I /* create or */
OPEN_ACTION_OPEN_IF_EXISTS, /* open */
OPEN ACCESS WRITEONLY I /* write only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing */
0)) /* no extended attributes */

(

printf ("error accessing the printer. ") ;
exit (1) ;

)

if(Doswrite(fh, buf, strlen(buf), &count))

Filel/0 263
Chapter 11

printf ("error in write operation") ;

if (Dosclose (fh))
printf ("error closing the printer") ;

)

It is quite easy to read from and write to devices using the file system.
OS/2 can automatically route input and output to and from the various
devices without your program needing intimate knowledge of the
system's configuration or the device drivers.

OS/2 STANDAPD DEVICES

OS/2 has three built-in file handles, which are associated with three
standard devices. These handles are created when your program begins
executing. The handles and their meaning are shown here:

Device

stdin
stdout
stderr

Handle Meaning

0 Standard input
1 Standard output
2 Standard error (output)

By default, standard input is associated with the keyboard, standard
output with the screen, and standard error with the screen. However,
because OS/2 supports I/0 redirection of its standard devices, input
and/or output can be routed to disk files or to other devices.

The following program writes a message to standard output.

/* `This program writes output to standard output */
#def ine INCL DOS

#include <os2.h>
#include <stdio.h>
#include <string.h>

main ()
(

264 0S/22.0 programming
Chapter 11

ULONG count,.
CHAR buf [24] ;

strcpy(buf, "Hello OS/2 World!"),.

/* write a short message to it */
if(Doswrite(1, buf, strlen(buf), &count))

printf ("error in write operation") ;
)

Notice that the program does not have to open standard output,
because this is automatically done by OS/2 when the program begins.
Further, the program does not close standard output, because this too is
performed automatically. If this program is called STDOUT, then
executing it using this command line causes the message to be writ-
ten to the screen:

STDOUT

However, using this command line cause the message to be written to a
file called MESS:

STDOUT > MESS

DISPLAYING THE DIRECTORY

It is very common for an application program to need to display the
contents of a directory, so that the user can make a file selection. Fortu-
nately, OS/2 makes this very easy to do through its DosFindFirst() and
DosFindNext() services. Their prototypes are shown here:

APIRET APIENTRY DosFindFirst(PSZ 77i¢sk,
PHDIR fe¢7tdzc,
ULONG ¢#r,
PVOID '.7t/O'
UTJOING buf oength ,
PULONG cow71£,
ULONG Jcz)cJ);

Filel/0 265
Chapter 11

APIRET APIENTRY DosFindNext(HDIR ho7idJc,
PVOID ,'#/o'
UTJOING buf oength ,
PULONG co#7t£);

In DosFindFirst(), the 77t¢sk parameter is a null terminated string that
holds the file name you are looking for. This string can include the * and ?
wildcard characters. A directory handle is returned in the variable pointed
tobyfe¢77dJc.ThishandleisusedinsubsequentcallstoDosFileNext().Prior
to the call to DosFindFirst(), fe¢7idzc must contain the value 1 (HDIR_SYS-
TEM), or OxFFFFFFFF (HDIR_CREATE). If its value is 1, OS/2 supplies a
default handle. However, if you will be searching for more than one
specific file, then use OxFFFFFFFF, which causes OS/2 to return a handle
that can be used in subsequent calls to DosFindNext(). The fl#r parameter
specifies the type of file you are looking for. It can be any valid (non-
mutually exclusive) combination of the following values:

Macro

FILE READONLY
FILE HIDDEN
FILE SYSTEM
FILE DIRECTORY
FILE ARCHIVE
MUST HAVE READONLY
MUST HAVE HIDDEN
MUST HAVE SYSTEM
MUST HAVE DIRECTORY
MUST HAVE ARCHIVE

FileType

Include read-only files
Include hidden files
Include system files
Include subdirectories
Include archive files

Just read-only files
Just hidden files
Just system files
Directories only

Just archive files

The structure type pointed to by z.71/o depends on the value specified
in Zcz7cJ. The structure is filled with information about the file if a match is
found.

The bt/flc7igffe parameter specifies the length of the structure im.71/o. The
valuepointedtobycott7zfspecifiesthenumberofmatchestofindandholds
the number of matches found upon return. It is generally best to give cow7if
a value of 1. If no match is found, 0 is returned. The ZczJCJ parameter is used
to specify the level of information requested. The default level is 1, and is
the level of return even if Jcz7cJ is set to 0.

266 0S/2 2.0 programming
Chapter 11

For DosFindNext(), the parameters have the same meaning as those
for DosFindFirst().

If you are looking for only one specific file and fuuy specify that file's
name (no wildcards) in the call to DosFindFirst(), you will not need to use
DosFindNext(). However, if you are searching for (potentially) several
matches, the basic method is to first can DosFindFirst() to obtain the first
match (if any), as well as a directory handle. This directory handle is then
used in subsequent calls to DosFindNext().

There are two ways to determine when the last match has been found.
First, both DosFindFirst() and DosFindNext() fail and return an error code
if no match is found. Second, the co#71£ parameter will be zero when no
(more) matches are found.

The following program lists the current working directory. It displays
the file's name and length.

/* This program lists the directory */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

void show_dir(void) ;

main ()
(

show_dir () ;
)

/* Display the directory */
void show_dir()
(

FILEFINDBUF3 f ;
HDIR hdir;
ULONG count;

hdir = HDIR_CREATE; /* cause a new handle to be returned */
count = 1; /* find the first match */
DosFindFirst("*.*", &hdir, 0, &f, sizeof(f), &count,1);
do
(

printf("%-13s %d\n", f.achName, f.cbFile),.
DosFindNext(hdir, &f, sizeof(f), &count),.

Filel/0 267
Chapter 11

} while(count) ;
DosFindclose (hdir) ;

ACCESSING INFORMATION ABOUT THE DISK SYSTEM

It is not uncommon for an application to need various pieces of
information about the disk system, including such things as the total free
storage,thenumberofbytespersector,orthenumberofsectorspercluster.
To obtain this information, OS/2 supplies the DosQueryFslnfo() service,
which has this prototype:

APIRET APIENTRY DosQueryFslnfo(ULONG dr£.I)c,
UTJOING inf a-type ,
PVOID Z.71/O,
UTJONGbufoength).,

The d7'£.zJc parameter specifies the number of the drive you want to
receive information about. If it is 0, the default drive is used. Otherwise,
use 1 for drive A, 2 for drive 8, and so on. The !.71/o-ftypc parameter specifies
what type of information will be returned. If it is 1, then upon return z.7t/o
points to a structure of type FSALLOCATE, which is defined like this:

typedef struct FSALLOCATE {
ULONG idFilesystem,. /* system identifier */
ULONG csectorunit; /* sectors per cluster */
ULONG cunit; /* total number of sectors */
ULONG cunitAvail; /* available sectors */
ULONG cbsector; /* bytes per sector */

} FSALLOCATE;

In some OS/21iterature a cluster is referred to as a #7tz.£, but this book
win continue to use cluster, because it is the more common name.

This program displays the number of bytes per sector, the number of
sectors per cluster, the total disk space, and the total free disk space for the
defaultdrive.Thetotaldiskspaceiscomputedbymultiplyingthenumber
of bytes per sector by the number of sectors per cluster by the number of
clustersonthedisk.Thefreespaceiscomputedbymultiplyingthenumber

268.OS/2 2.0 Programming
Chapter 11

of bytes per sector by the number of sectors per cluster by the number of
clusters available.

/* Demonstrate the DosQueryFslnfo service and display the ntrfer
of bytes per sector, sectors per cluster, total disk
space,and available disk space

*/

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

main ()
(

FSALLOCATE f ,.

DosQueryFslnfo(0,1, &f, sizeof(f));

printf("Bytes per sector: %ld\n", f.cbsector);
printf("Sectors per cluster: %ld\n", f.csectorunit);
printf ("Total disk space: %ld\n",

f.cbsector * f.csectorunit * f.cunit);
printf ("Total available disk space: %ld\n",

f.cbsector * f.csectorunit * f.cunitAvail) ,.
)

EXAMINING AND CHANGING THE DIRECTORY

OS/2 provides two important directory services called
DosQuerycurrentDir() and DossetcurrentDir(), which are used to re-
turn the pathname of the current directory and to change the current
directory. Their prototypes are shown here:

APIRET APIENTRY DosQuerycurrentDir(ULONG dr€.z7c,
pByTE p¢£fe,
PULONG s!.zc);

APIRET APIENTRY DossetcurrentDir(PSZ p¢ffe);

Filel/0 269
Chapter 11

In DosQuerycurrentDir(), the dr€.zJc parameter specifies the drive to
beoperatedon.Tospecifythedefaultdrive,useofordrz.zJc.FordriveAuse
1, for drive 8 use 2, and so on. Upon return, the character array pointed to
by pflffe will hold the pathname of the directory. The integer pointed to by
s!.ze must hold the length of the array pointed to by p¢ffe prior to the call.
It returns the length of the pathname.

In DossetcurrentDir(), pflffe points to the character array that holds
the new directory pathname.

Thisprogramfirstdisplaysthecurrentdirectoryname,switchestothe
root directory, and then switches back to the original directory.

/* Displaying and changing the directory */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

main ()
(

CIIAR olddirname[64] , newdirname[64] ;
ULONG size;

size = 63;

DosQuerycurrentDir(0, olddirname,
printf ("current directory: %s\n",
DossetcurrentDir (" \ \ ") ;
DosQuerycurrentDir (0, newdirname,
printf ("current directory: %s\n",
DossetcurrentDir (olddirname) ,.
DosQuerycurrentDir (0, newdirname,
printf ("current directory: %s\n",

&size) ;
o lddi rname)

&size) ;
newdi rname)

&size) ;
newdi rname)

CHAPTER

ffipEATING AND USING

DYNAMIC LINK LIBPIAPIES

Before concluding this book we will examine one of OS/2's most
important features: dynamic link libraries. Through the use of
dynamic link libraries, your programs can be made more efficient
and more maintainable. This chapter begins with an overview of
dynamiclinking,bothatloadtimeandruntime,andconcludeswith
several examples. It is possible to create dynamic Hnk libraries that
have a single thread of execution or that have multiple threads.
However, in this chapter we will be concerned only with single-
thread dynamic link libraries.

Throughouttheremainderofthischapter,thetermdy7tz3.7tkwiu
be used interchangeably with dy7t¢777z.c Z3.77k. Dy7iJz.7tk was coined by
the developers of OS/2 and its use seems appropriate.

WHAT IS DYNAMIC LINKING?

Put simply, dynamic linking is the process whereby references
toextemalsubroutinesand/ordataareresolvedwhentheprogram
is loaded. A linker, whether static or dynamic, has two main func-
tions. First, it combines separately compiled modules and libraries
into an executable program. Second, it resolves references to exter-
nal functions or data. For example, if you have a main program file

272 0S/2 2.0 programming
Chapter 12

that uses library functions, when the program is compiled, only place-
holdinginformationisgeneratedwhenalibraryfunctioniscalledbecause
the compiler has no way of knowing that function's location in memory.
It is the linker's job to resolve these addresses.

Dynamic linking differs from static linking in one important way:
when the linking takes place. When a program is statically linked, all
functions that it requires are physically bound together in its .EXE file
when it is compiled. However, in a dynamic linking situation, parts of a
program reside in one or more dynlink libraries that are linked to the main
programatloadtime.Hereisakeypoint:themainprogramanditsdynlink
librariesareindividuallylinkedstatically.However,themainprogramand
its dynlinks are not statically linked to each other. hstead the final hinking
is performed by the OS/21oader.

Although final linking is done by the loader, your program stiu needs
to be linked by the linker. When your program calls a dynlink routine, an
external reference is generated. When the linker encounters this reference,
it generates code that will cause the appropriate dynamic hnked library to
be loaded when the progra-in is executed. The entire loadtime linking
process is invisible to the user. To understand just how transparent dy-
namic linking is, remember that the OS/2 API services are implemented
as dynlinks.

DYNLINK ADVANTAGES

Dynamic linking has several advantages over the more traditional static
linking.First,thereisagreatsavingsindiskspacebecauseeachprogramdoes
not contain the code found in the libraries. That is, when several programs
that use the same library functions are statically linked, each program file
contains copies of the library functions. However, when the same programs
are dynamicafly linked, this duplication of code is avoided.

Another important advantage of dynamic linking is that it simphfies
the chore of program maintenance. Because the routines in a dynlink
library are separate from the main program, it is possible to upgrade or
repair a dyn]ink routine without recompiling the entire program. For
example,anaccountingpackagecouldbeupgradedwhentaxlawschange

Creating and using Dynamic Link Libraries 273
Chapter 12

by simply changing a dynlink library. When the program is executed, the
new routine is automatically used.

IMPORTANT DYNLINK FILES
Eachdynlinklibraryissupportedbyaminimumoffourseparatefiles.

First, there is the file that contains the source code to the dynlink routines.
Most likely, this will be a C source file. The compiler transforms this file
into a standard .OBJ file, which is the second file.

The third file is the definition file that is associated with the source file.
This definition file could have the same name as the source file, but use
the .DEF extension. The definition file contains several pieces of informa-
tionthatdescribethedynlinklibrary.(Youwfllleammoreaboutdefinition
files a little later.)

Finally,thereisthedynlinklibraryitself.And)m]inklibraryfilesmustuse
the .DLL extension and must reside in the dynamic link directory. The .DLL
file is created by the same linker used to provide static linking. It takes the
.OBJ files created by the compiler and converts it into a d)m]ink file.

CREATING A SIMPLE DYNLINK LIBRARY

In this section a simple dynamic link library will be developed. Along
the way you will leam several important requirements that must be met.

DYNLINK FUNCTIONS
All dynlink functions reside separately from the calling program's

code. Dynlink functions, like the window and dialog functions presented
in Part 2, must be declared with linkage type EXPENTRY. The return type
also needs to be declared for all functions residing in a library even if there
is no return value. (In this case the return type is VOID.)

Data within a dynhnk function can be of two different types: s71¢rcd
data and I.#sf¢7icc data. Shared data, also known as global data, is shared
among all processes that call the dynlink function. Instance data is just the
opposite. Each process that calls the dynlink function has its own unique
copy of the data. How the data is handled is defined in the .DEF file. Exact
use of the .DEF file definitions is discussed in the sections that follow.

274 0S/22.0 programming
Chapter 12

A SIMPLE DYNLINK LIBPARY
The following code will be used to create a very small dynlink library

that contains only one function: my_write(). Assume that this file is called
LIBTEST.C

/* A small library example. */

#include <os2.h>
#include <string.h>

VOID EXPENTRY my_write(PSZ s)
(

ULONG written;

Doswrite(1, s, strlen(s), &written);
return'.

)

Before this file can be transformed into a dynhnk library, its definition
file must be created. Although we will examine definition files in detail in
the next section, the one sh?wn here contains the minimal elements
necessary to successfully convert LIBTEST.C into a dynlink library. Call
this file LIBTEST.DEF.

LIBRARY libtest
EXPORTS my_write

The LIBRARY statement specifies the name of the dynlink library. The
.DLL extension is assumed. The EXPORTS statement lists those functions
in the dynlink library that are accessible by other programs. (A dynlink
library can contain internal functions that are not usable by other pro-
grams.)Thedefinitionfileiscasesensitiveanditmustbeenteredasshown.
Call this file LIBTEST.DEF.

To create the dynlink library, use this command:

ICC /Ge-LIBTEST.C LIBTEST.DEF

The /Ge- option tells the compiler to create a dynlink library instead
ofanexecutablefile.Inorderforos/2tofindthedynlinklibrary,youmust
copy the resulting LIBTEST.DLL into the directory specified by the

Creating and using Dynamic Link Libraries 275
Chapter 12

LIBPATH environment variable found in the CONFIG.SYS file. OS/2 will
also find the library if it is in the current directory.

ACCESSING DYNLINK FUNCTIONS
Creating the dynlink library and its support files is only one-half the

story. You must follow a few special steps in order for your application
program to access the dynlink functions. For example, this short program
uses the my_write() function to output a string to the screen. Assume the
name of this program is TEST.

/* Sample function to test library. */

#include <os2.h>

VOID EXPENTRY my_write(PSZ) ;

main ()
(

my_write("dynlink libraries work") ;
return 0;

)

In order to access the dynlink library LIBTEST.DLL, it is necessary to
createadefinitionfilefortheapplicationprogramthatnamesthefunctions
in the library. (In the next section you will see that this is not always true.)
In the apphcation definition file, the dynlink functions accessed by the
programarelistedinanIMPORTcommand.Avalidapplicationdefinition
file for this program is shown here:

NAME test WINDOWCOMPAT
IMPORTS libtest.my_write

The first line states the name of the program. The second line specifies
which files will be imported from the LIBTEST.DLL dynlink library.

When you link the program, you must specify the application defini-
tion file on the linker command line. For example, assuming that the main
program and definition files are called TEST, use this command to compile
the program:

ICC TEST.C TEST.DEF

276 0S/22.0 programming
Chapter 12

lMPORT LIBHARIES

Creating an z.77!por£ J€.Z7r¢ny, while unnecessary for accessing dynfink
libraries, makes accessing the functions in a dynlink library a bit simpler.
An import library allows your application and the dynlink libraries to be
linked without requiring explicit naming of each of the library functions
inside your application definition ffle. The OS/2 API libraries are import
libraries. This is how you can access the API functions without explicitly
naming the functions in a definition file. Import libraries are generated by
theIMPLIButilityprogramusingthedynlink'sdefihitionffle.Thegeneral
form of an IMPLIB command is shown here:

IMPLIB OUTPUT.LIB FILENAME.DEF

where OUTPUT.LIB is the name of the created import library and
FILENAME.DEF is the definition file for the dynlink library. To create the
import library for LIBTEST.DLL, use this command:

IMPLIB LIBTEST.LIB LIBTEST.DEF

once created, the d)mlink library can be accessed simply by linking
directlytotheimportlibrary.Nodefinitionfilespecifyingeachfunctionin
the dynlink library is needed.

The previous example program, TEST, can be compiled and hnked to
the LIBTEST dynlink library by using the following command:

ICC TEST.C LIBTEST.LIB

In this small example, the benefits of using the mffllB utility are not
apparent. Imagine that you need to create a definition file Hsting all the API
functions you want to use. The task could get overwhehing, but using the
INILIB utility allows you to link knowing just the name of the library.

THE DEFINITION FILE

To create dynlink libraries, it is necessary to write a definition file for
each library. Depending on your programming needs, you may also need

•|!frs 2J7
Creating and Using Dynamic Link Libraries

Chapter 12

a definition file for application programs. As you have seen, the most
common use for a definition file is to specify what functions a dynlink
library exports or what functions an application file imports. However,
there are several other pieces of information that can be included in a
definition file.

The linker recognizes many definition file commands. Many of the
commandsareoptional.Whenacommandisnotincludedinthedefinition
file, the default setting is used. Let's take a look at some of these linker
commands now.

CODE
The CODE command tells the linker how to handle the code of the

associated program or library. It takes this general form,

CODE option_list

where opf€.o7iJz.sf may be one of the following:

Option Meaning

PRELOAD The code is loaded when the program begins
execution

LOADONCALL The code is loaded when it is needed (Default)

DATA
The DATA command tells the linker how to handle the data in the

associated program or library. It takes this general form,

DAIAoption_list

where opfz.o7iJz.sf may be one or more of the following:

Option

PRELOAD

LOADONCALL
SINGLE

Meaning

The automatic data is loaded when the program
begins execution
The data is not loaded until it is needed (Default)
The same data is used by all executing versions
of the module

278 0S/22.0 programming
Chapter 12

Option

NILTIPLE

READONLY
READWRITE

Meaning

Each executing version of the module has its
own data (Default)
The automatic data may be read but not written to
The automatic data may be read and written to
(Default)

LIBPAPY
The LIBRARY command is used to name the library and to determine

when the dynlink function will be initialized and terminated. The ihitial-
ization and termination routines can be called each time a process uses a
dynlink, or called just once, the first time any process loads the dynlink.
The LIBRARY command takes this general form,

I::IB:RA:R:Y lib _name option_list

where Jz.b_7t¢77zc is the name of the library and opfz.o71J!.sf may be one or
more of the following:

Option Meaning

INITGLOBAL The initialization routine is called once, on the
first access (Default)

INITINSTANCE The initialization routine is called for each
separate process access

TERMGLOBAL The termination routine is called once, when all
processes are finished with the library

TERMINSTANCE The termination routine is called each time a
process finishes with a library

DESCRIPTION
The DESCRIPTION command imbeds the string that follows it into

the executable file or library. It takes this general form:

DESCRIPTION 'sfr3.7ig'

Notice that the string must be enclosed between single quotes.

•279
Creating and Using Dynamic Link Libraries

Chapter 12

The main use for DESCRIPTION is to add copyright information into
a program or library prepared for distribution.

EXPORTS
The EXPORTS command tens the linker which functions in a module

will be accessible by other modules. You can specify multiple exported
functions in a single EXPORTS command, but each must go on a separate
line. The EXPORTS command supports several options. However, in its
simplest form, EXPORTS takes this general form,

EXpon(Tsfunc_namel
func_nane2

func_nameN

whererty7icjt¢fflc is the name of an exported function.
The EXPORTS command supports some additional options, but

they are for advanced programming situations that are beyond the
scope of this book.

IMPORTS
The IMPORTS command tells the linker what functions are used by

the module and what files these functions are in. This command is mainly
employed when dynamic link library functions are called by the module.
In its simplest form, IMPORTS takes the following general form,

I::M:PORTsfilename.func_namel
fuenane.func_nane2

fuenane.func_nameN

where¢.Jc7i¢777c is the name of the file that contains the function specified
by¢#cjz¢77tc. For example, to import the function test() from the library
LIBTEST.DLL, use this IMPORT statement:

280.OS/2 2.0 Programmng
Chapter 12

IMPORT LIBTEST. test

The linker will automatically add the .DLL extension to the library
filename. You may import any number of functions, but each one must be
placed on a separate line.

NAME
The NAME command serves two purposes. First, it identifies the

associated source file as a program rather than as a library. Second, it can
be used to specify the name of the file. The command takes this form,

NAME 77¢777c

where71fl777cisthenameoftheapplication.Ifno7i¢777cparameterispresent,
the name of the executable application file is used.

ANOTHEH DYNLINK EXAMPLE
For a slightly larger example of creating and using dynlink libraries,

separate routines are put in a dynlink library that may be accessed by any
program you write. The source code for each of the functions is shown
here. Call this file MYLIB.C.

/* A dynlink library of functions. */

#def ine INCL DOS
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#def ine STDOUT 1
CHAR str[256] ;
ULONG written;

/* A simple clear screen-let the system do it. */
VOID EXPENTRY clear_screen (VOID)

•281
Creating and Using Dynamic Link Libraries

Chapter 12

system (" cls ")
return;

/* Prompt for input after clearing the screen. */
VOID EXPENTRY prompt_user (VOID)
(

strcpy(str, "\n\nEnter a string:");
Doswrite(STDOUT, str, sizeof(str) , &written) ;
return;

)

/* Display the time. */
VOID EXPENTRY do_beep700 (VOID)

(
DosBeep (7 0 0 , 70 0) ;
return;

)

In order to create a dynlink from this file, you will need to create the
definition file MYLIB.DEF, as shown here:

LIBRARY mylib
EXPORTS clear screen

prompt_user
do_beep700

Compile and link this file into a dynlink library using the following
command:

ICC /Ge-MYLIB.C MYLIB.DEF

To try the library, use this short program called SCREEN.C:

/* A sample program that calls the example library. */

#include <os2.h>
#include <stdio.h>

VOID EXPENTRY clear_screen(VOID) ;
VOID EXPENTRY prompt_user (VOID) ;

282.OS/2 2.0 Programming
Chapter 12

VOID EXPENTRY do_beep700 (VOID) ;

main ()
(

CHAR str[256] ;

clear_screen () ;
prompt_user () ;
gets (str) ;
printf("You entered: %s \n", str);
do_beep700 () ;
return 0'.

)

Create the SCREEN.DEF definition file for the SCREEN program as
follows:

NAME test WINDOWCOMPAT
IMPORTS mylib. clear_screen

myl ib . prompt_us er
myl ib . do_be ep 7 0 0

Compile and link the program using the following commands:

ICC SCREEN.C SCREEN.DEF

As explained earlier in this chapter, you can skip creating the applica-
tion definition file if the IMPLIB utility is used to create an import library.
The following command will create an import library for MYLIB:

IMPLIB MYLIB.LIB MYLIB.DEF

Now, instead of entering the SCREEN.DEF application definition file,
the library can be linked directly with the following colmmand:

ICC SCREEN.C MYLIB.LIB

Either method of building and linking your programs results in the
same executable file and functionality.

Creating and using Dynamic Link Libraries 283
Chapter 12

RUNTIME DYNAMIC LINKING

As flexible as loadtime dynamic linking is, it is not the answer for all
situations because it requires the name of the module and the name of the
functions within the module to be known at compile time. Some applica-
tions need the ability to access a dynlink routine that is defined at runtime.
For example, a problem-solving AI-based program may access a collection
of problem-solving routines in its attempt to find a solution to a given
problem. Using runtime dynamic linking, the problem solver could try an
arbitrarilylonglistofdifferentproblem-solving functions-evennewones
added while it is rurming-in its attempt to find a solution. In general,
runtime dynamic linking allows your program to handle changing situa-
tions easily.

To enable runtime dynamic linking, OS/2 provides the services shown
in Table 12-1. In this section, these services are discussed and an example
is developed.

Service

DosLoadModule()
DosQueryprocAddr()

DosQueryprocType()

Function

Loads the specified dynlink library
Returns the address of a specific function
within a dynlink module
Returns procedure type: 16-or 32-bit

DosQueryModuleHandle() Returns the handle of a previously loaded
module

DosFreeModule()

TABLE 12il

Disposes of a dynlink module and frees the
memory used by it

Runtime Dynanic Linking Services

284 0S/22.0 programming
Chapter 12

LOADINGTHE DYNLINK LIBRAPY
Before your program can access a function that is loaded dynami-

cally at runtime, the module that contains the function must be loaded
into memory using the DosLoadModule() service whose prototype is
shown here:

APIRET APIENTRY DosLoadModule(PSZ/##b%/,
UTJONGfulbuf_size,
PSZ name,
p"oDULE 777fe¢#dzc);

The region of memory pointed to by/#z7bw/receives information about
the cause of a failure should an error prevent DosLoadModule() from
finishingitsloadoperation.Thesizeofthebufferisspecifiedby/#z7b#/_sz.zc.
Generally, 128 bytes is sufficient. The filename of the dynlink library,
including drive and path information, must be pointed to by 7t¢77tc. If
successful, DosLoadModule() returns a module handle in the variable
pointed to by 7#fefl7idJc.

If the module has already been loaded by another program, it is not
reloaded.

ACCESSING DYNAMICALLY LOADED FUNCTIONS
Cince the module has been loaded, you must use DosQueryproc-

Addr() to obtain the address of each function in the library you want to
call. DosQueryprocAddr() has this prototype:

APIRET APIENTRY DosQueryprocAddr(I"ODULE 77tha7tdJc,
ULONG ord,
Pszfunc_name,
PENfunc_addr).,

The 777fe¢7idJc parameter must have been acquired through a call to
DosLoadModule(). The parameter ord is the ordinal value of the desired
procedure. If ord is set to zero, then the following parameter, ¢7tc+i¢77te,
must provide the function name. The string pointed to by ¢7tc+ifl77tc
contains the name of the function that you want to call. This parameter is
ignoredifthepreviousparameter,ord,isanon-zerovalue.Apointertothe
requested function is returned in the function pointer pointed to by
fumc_addr.

Creating and using Dynamic Link Libraries 285
Chapter 12

To see a simple example of runtime dynamic linking, try this program:

/* This program assumes that the dynlink library MYLIB.DLL,
developed earlier in this chapter, is available.
If it is not, you must create it before attempting to
use this program.

*/

#def ine INCL DOSMODULEMGR

#include <os2.h>

CHAR failbuf [128] ;
HMODULE mhandle,.

PFN func;

main ()
(

if (DosLoadModule(failbuf, /* name of fail buffer
sizeof (failbuf), /* size of fail buffer
"libtest", /* name of dynlink lib
&mhandle)) /* the module handle

(

printf ("error loading dynlink module") ;
exit (1) ;

)

if(DosQueryprocAddr(mhandle, 0, "my_write", &func))
(

printf("cannot find the specified function");
exit (1) ;

)

func ("runtime dynlink module loading works") ;
)

As the comment at the start of the program suggests, this program
dynamically loads the LIBTEST.DLL dynlink library developed in the first
part of this chapter and uses my_write() from that library to display a
message. You should pay special attention to the declaration of the func-
tionpointerfunc.Rememberthatfuncisthenameofapo€.7ifcrtoafunction.
It is not the name of a function.

286 0S/22.0 programming
Chapter 12

UNLOADING A DYNLINK LIBPARY
In the preceding example, the program terminated immediately after

calling the dynlink function. However, in a real application this will
probably not be the case. Since a program may need to load, at different
times, several different library modules, OS/2 provides the
DosFreeModule() service that removes a module and frees the memory it
used. The prototype for DosFreeModule() is shown here,

APIRET APIENTRY DosFreeModule(HMODULE 77zfe#7idJc);

where 777fe¢7idJc is the handle of the module that is being removed.

A RUNTIME DYNAMIC LINK EXAMPLE
To help give you a feeling for using runtime dynlink libraries, a short

file utility dynlink library will be created, along with a program that uses
it. The file utility library is a slightly modified collection of functions
developed in Chapter 11 that allows you to list the directory, browse
throughafile,1istthecontentsofafile,anddisplayinformationaboutyour
hard disk. Although this example could have been written without using
runtime dynamic linking, it does illustrate its use. (Programs that actually
need runtime dynamic linking tend to be quite long and complex, making
them unsuitable for examples.)

The file dynlink functions are shown here:

/* A sample file utility library containing four functions. */

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>

VOID EXPENTRY show_dir(VOID) ;
VOID EXPENTRY browse_file(PSZ fname) ;
VOID EXPENTRY display_file(PSZ fname) ;
VOID EXPENTRY disk_info(VOID) ;

/* This program lists a directory. */

VOID EXPENTRY show_dir (VOID)
(

FILEFINDBUF3 f ;

Creating and using Dynamic Link Libraries 287
Chapter 12

HDIR hdir;
ULONG count;

hdir = HDIR_CREATE; /* cause a new handle to be returned */
count = 1,. /* find the first match */
DosFindFirst("*.*", &hdir, 0, &f, sizeof(f), &count,1);
do
(

printf("%-13s %d\n", f.achName, f.cbFile);
DosFindNext(hdir, &f, sizeof(f), &count);

} while(count) ;
DosFindclose (hdir) ;

/* A file browse program. */

VOID EXPENTRY browse_file(PSZ fname)
(

ULONG fh;
ULONG action;
ULONG mum_bytes ;
CHAR buf[513], ch;
ULONG pos;
LONG p;

/* open the file, no file sharing */
if (Dosopen(fname, /* the file to open

&fh, /* pointer to handle
&action, /* pointer to result
0, /* initial length */
FILE_NORMAL, /* normal file */
OPEN ACTION FAIL IF NEW I /* do not create */
OPEN_ACTION_OPEN_IF_EXISTS, /* open if exists */
OPEN ACCESS READONLY I /* read only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed*/
0)) /* no extended attributes */

(

printf ("error in opening file") ,.
exit (1) ;

)

/* main loop */
pOs = 0'.

288 0S/22.0 programming
Chapter 12

do
(

if (DosRead(fh, buf, 512, &num_bytes))
(

printf ("error reading file") ;
exit (1) ;

)
buf [num_bytes] = '\0'; /* null terminate the buffer */
printf (buf) ; /* display the buffer */

/* see what to do next */
ch = tolower(getc (stdin)) ,.
swi tch (ch)
(

case 'e': /* move to end, the last 512 bytes */
DossetFileptr(fh, -512, FILE_END, &pos) ;
break'.

case 's': /* move to start, the first 512 bytes */
DossetFileptr(fh, 0, FILE_BEGIN, &pos),.
break;

case 'f': /* move forward */
/* forward is automatic, so no change is required */
pos += num_bytes;
break;

case 'b': /* move backward */
p = pOs -512;
if (p < 0)

p=0;
DossetFileptr(fh, p, FILE_BEGIN, &pos);

)

) while(ch != ,q');

if (Dosclose (fh))
printf ("error closing file");

)

/* This function lists the entire file. */

VOID EXPENTRY display_file(PSZ fname)
(

ULONG fh;
ULONG action;
ULONG num_bytes ;
CHAR buf [513] ;

Creating and using Dynamic Link Libraries 289
Chapter 12

/* open the file, no file sharing */
if (Dosopen(fname, /* the file to open

&fh, /* pointer to handle
&action, /* pointer to result
0, /* initial length */
FILE_NORMAL, /* normal f ile */
OPEN ACTION FAIL IF NEW I /* do not create */
OPEN_ACTION_OPEN_IF_EXISTS, /* open if exists */
OPEN ACCESS READONLY I /* read only with */
OPEN_SHARE_DENYREADWRITE, /* no sharing allowed */
0)) /* no extended attributes */

(

printf ("error in opening file") ,.
exit (1) ;

)

do
(

if(DosRead(fh, buf, 512, &num_bytes))
(

printf ("error reading file") ;
exit (1) ;

)
buf [num_bytes] = '\0'; /* null terminate the buffer */
printf (buf) ;

} while (num_bytes) ;

if (Dosclose (fh))
printf ("error closing file") ;

/* Display information about the hard disk. */

VOID EXPENTRY disk_info (VOID)
(

FSALLOCATE f ;

DosQueryFslnfo(0,1, &f, sizeof(f));

printf("Bytes per sector: %ld\n", f.cbsector);
printf ("Sectors per cluster: %1d\n", f.csectorunit)
printf ("Total disk space: %ld\n",

f.cbsector * f.csectorunit * f.cunit),.

290 0S/22.0 programming
Chapter 12

printf ("Total available disk space: %ld\n",
f.cbsector * f.csectorunit * f.cunitAvail);

)

Call this file FILE.C. The definition file for the library is shown here:

LIBRARY FILE
EXPORTS show dir

di spl ay_f i l e
browse f ile
disk info

Compile and link FILE.C using the following corrmands:

ICC /Ge-FILE.C FILE.DEF

ThenextsampleprogramshownhereloadsFILE.DLLduringruntime
and calls the appropriate function chosen by the user from the menu.
Notice that the function pointer func does not have a prototype parameter
list declared. Since the file functions do not all take the same number of
parameters, it is not possible to use a prototype.

/* A simple menu driven file manager program that uses
a runtime dynlink library.

*/

#def ine INCL DOS

#include <os2.h>
#include <stdio.h>
#include <process.h>

UCHAR EXPENTRY menu (VOID) ;

CHAR failbuf [128] ;
HMODULE mhandle;
PFN func;

main ()
(

UCHAR choice;
UCHAR fname [80] ;

/* Load the dynlink library module. */

•291
Creating and Using Dynamic Link Libraries

Chapter 12

if(DosLoadModule(failbuf, /* name of fail buffer
sizeof(failbuf), /* size of fail buffer
"file", /* name of dynlink lib
&mhandle)) /* module handle */

(

printf ("error loading dynlink module") ;
exit (1) ;

)

/* Display a menu of choices and process the selection. */
do
(

choice = menu() ;
swi tch (choi ce)
(

case 1:
/* Display a file. */
if (DosQueryprocAddr(mhandle, 0,

" di sp lay_f i le " ,
&func))

(

printf("cannot find the specified function");
exit (1) ;

)

/* Get the file name. */
puts("\nEnter a filename: ");
gets (fname) ;

/* Call the library routine. */
f unc (fname) ;
break;

case 2:
/* Browse through a file. */
if (DosQueryprocAddr (mhandle, 0,

" browse_f i i e " ,
&func))

(

printf ("cannot find the specified function") ;
exit (1) ;

)

/* Get the file name. */

292.OS/2 2.0 Programming
Chapter 12

puts("\nEnter a filename: ");
gets (fname) ;

/* Call the library routine. */
f unc (fname) ,.
break;

case 3:
/* Display the directory list. */
if (DosQueryprocAddr (mhandle, 0,

" show_dir " ,

& f unc))
(

printf ("cannot find the specified function") ,.
exit (1) ;

)

/* Call the library routine. */
f unc () ;
break'.

case 4:
/* Display disk information. */
if (DosQueryprocAddr (mhandle, 0,

" di sk_inf o " ,
&func))

(

printf ("cannot find the specified function") ;
exit (1) ;

)

/* Call the library routine. */
f unc () ;
break,.

)

} while(choice!=5) ;
DosFreeModule (mhandle) ;
return 0;

/* Display a menu. */

UCHAR EXPENTRY menu (VOID)

(

Creating and using Dynamic Link Libraries 293
Chapter 12

UCHAR reply[256] ;
UCHAR choice,.

do(
/* Display menu choices */
puts("1. list a file");
puts("2. browse through a file");
puts("3. directory");
puts("4. disk info");
puts("5. quit„);

/* Get choice from user */
puts("Enter your selection: ");
gets (reply) ;
choice = reply[0] ;

} while (choice < '1' 11 choice > '5');
/* convert to an ASCII value, and return */
return(choice -'0'),.

)

As you can see, the example program displays a list of menu choices
to select from. To quit the program, select 5 from the menu.

DYNAMIC LINKING IMPLICATIONS

The use of dynlink libraries at either loadtime or runtime not only
expands the options available to you when you create an application, but
their use implies a fundamental restructuring of the approach taken to a
program's design. To take the best advantage of dynlinks, it is necessary
to group the various functional elements of your program into separate
dynlink libraries. While this step is fairly obvious, the next is not. You must
decide what parts of your program are, more or less, fixed and what parts
might change. While it is conceivable to have the main program consist
simply of a main() function that issues calls to dynlink routines, a more
likely situation will involve a balance between dynlink code and statically
linked program code. The proper mix will vary between applications, and
achieving it requires both thought and experimentation. Remember: the
flexibility and improved maintainabflity of your programs is worth the
extra effort dynamic linking requires.

|E:#>

INDEX

Abort button, 98, 99
Accelerator keys, defined, 114

definitions for menu items, 115
sequences, 135

Accelerator table
added to the resource file,116
and type options, 114
definition form, 114
loading,116-118

Accelerator window and flags, 116
Access codes, 245
Action parameter, 194
chchor block, 53

defined, 51
and Winlnitialize(), 52
obtaining an, 51
handler, defined, 51

API (Apphcation Program Interface),18-19
called-based interface, 45
defined, 45
exploring the, 183

API categories, major, 32
API data types, (table, 29)
API functions, accessing, 276
API interface, and types of parameters, 22
API libraries, as import libraries, 276
API services, 32, 51

and C language, 22
and C program, 23

295

and EAX register, 23
convention by the, 33-36
implemented as dynhnks, 272

Apphcation Program Interface. See API
Application skeleton

for Presentation Manager, 48
sample output from the, (fllus., 92)

Apphcations
types of, 32
windowable defined, 32

ASCH character, 115
ASCH integer value and key, 115
ASCH representation of key, 114
Attribute flags, for shared memory accesses,

(table, 232)
Attributes, determining file, 245

Beep session, 200
BEEP.EXE program, 200
Bitmap' 97
Boolean values, 47
Boxes, combination, 152-153
Break signal, 80
Buffer

contents of, (program, 261-263)
extended attribute, 246
length, 252
specifying length of, 248-249
writing output to, 246, 248

296 0S/22.Oprogramming

Buffer size, in loading dynlink library, 284
Buttons, 143-144

defined, 138, 143
Buttons and pointer, selectable,107
Bytes

finding number of free, 267
finding number per sector, 267

C and API parameters, 26-31
C compiler, 241
C file system

ease of use of, 241
0S/2 file systems paralleling, 241

C function
and OS/2, 25
prototype, 33

C prograns
and API services, 25
modem method of calling parameters, 35
sample, 23-25
traditional method of calling parameters, 35

C prototypes, using, 33-36
C runtime functions, 65
Cached micro-PS

defined, 66
obtaining a handle to a, 75

Call, putting a, 222
Call gate, defined, 17
Call iustructious, issuing, 22
Call-based interface, 18, 21-23
Call-by-reference, 22-23
Call-by-value, 22, 23
Cancel button, 98, 99
CAPS LOCK function, 115
Carriage returns, and GpicharstringA(), 67
cbstack parameter, 204
Char pointer, 47
Check boxes, 138, 143
Child

exit code, 190
inheriting the parent environment by the,

191

program, 188
Chfld threads

executing two, 221-222
semaphores and, 219

Class by prefix functions, (table, 30)
Class parameter, 208
Classnane parameter, 54
Client window, and window class, 54
Client_style parameter, 54

CODE command, 1inker and, 277
Code, synchronizing critical section of, 228-230
CodeResult,190
CodeTerminate,190
Colors

changing background and foreground, 70
default for background and foreground,

71-72
displaying text in, 70-75
mixed into background, 72
using foreground and background, 73-75
values for mixing background and

foreground, 72
Combination boxes, 152-153

advantages of,153
defined, 138

Command line, specifying file name on, 255
Communication, inter-process, 213-239
Compatibility path, with DOS and OS/2, 13
Compiled .RES and .DLG files, saving, 136
Compiling a program, 129
Container view, 155
Containers, 154-155

and bitmaps, icons and text, 153
defined, 139

Control types
button, 138
combination boxes, 138
containers, 139
entry fields, 138
list boxes, 138
notebooks, 139

pushbutton, 120
shders, 139
spin buttons, 138
value sets, 139

Control window button, pressing a, 131
Control windows,137-160

adding, 142-143
defined, 120

Controls,120
Copyright information, adding with

DESCRIPTION command, 279
CP/M, history of, 4
CPUs, description table, 12
Critical code

keeping short, 230
synchronizing, 228-230

Critical section, defined,16-17
Cursor position

affecting the location of the, 67
keeping track of the, 67

Index 297

Data
instance in dynhnk function, 273
shared in dynlink function, 273

DATA command, linker and, 277-278
Data types, 28-30

defined, 47
reading and writing, 258-260

.DDL extension, automatically added by
IITORTS cmd., 280

.DEF extension, 61, 273

.DEF files
complex programs, 61
defined, 37
small programs, 61

Default, 107
Default data sizes, 36-37
Default dialog procedure, 121
Default editor, 136
Default extension, and resource compiler, 135
Default icon, changing the, 162-164
Default mouse pointer,162

changing the, 165
Definition ffle, 60-61

in creating dynlink libraries, 276-280
in dynhnk, 273
on the compiler command hne, 61

Deny share attributes, 246
DESCRIPTION command

adding copyright information with, 279
embedding string with, 278-279

DeskResumeThread (), 204
Desktop model, for Presentation Manager, 42-43
Details view,155
Devices

OS/2 supported, (list, 260)
reading and writing to, 260-263

Devices, standard,I/0 redirection supported for,
263

Dialog box activation, 122
Dialog box control

accessing a, 125
and resource ID, 122

Dialog box function prototype, 121
Dialog box messages

receiving,121-122
responding to multiple, 129-135

Dialog box program
output from the first, (illus., 126)
output from the second (fllus., 131)

Dialog box resource file, 124-125

Dialog box sample program
first, 126-129
second, 132-135

Dialog box window function, 125
Dialog boxes, 119-136

activating, 122-123
and controls, 120
and modal versus modeless, 120-121
and the control window, 120
closing the, 126
creating simple, 123-129
defined, 43-44, 119
displaying the, 126
handle, 122
information for displaying, 124
interacting with the user, 120-121
messages generated by, 119
messages sent to, 119
modal, 120
modeless, 120
result, 122
specified by a resource ffle, 124
specified by a text editor, 124
temrinated, 122

Dialog editor, 124
and .RES file, 136
creating a resource ffle with a, 122
saving a compiled version of .RC with a,

136

saving a resource ffle from a, 135
saving projects before leaving, 136
using, 135-136
with IBM Workset/2 Tookit, 124
with three pushbuttons, 129

Dialog procedure
calling the, 125
default, 121
defined, 121
releasing the, 122

Dialog resource ffles, creating, 135
Dialog_func(), 125
Digital Research, founder Gary Kildahl of, 4
Directory

display, 264-267
examining and changing the, 268-269
program for listing current, 266

Disk, direct access to, 241-242
Disk space

finding amount of free and used, 267-268
saving by dynlink, 272

Disk system, accessing information about the,
2!fffl-2Jfffij

298 0S/22.0 programming

.DLG extension, 135-136
DOS

and C Standard library functions, 25
as a real mode operating system, 13
hmitatious, 5

Dos function definitions, including,188
DosAnocsharedMem() function, 231
Dosbeep function, 23, 33

and C environment, 24
and C program, 24
setting as shared function, 222-223

Dosclose(), 241

prototype, 248
DoscreateThiead(), 203-205
DosEntercritset()

cauing, 228
using semaphores instead of, 230

DosExitList() service,196
cauing, 197
values for, 196

DosExecpgm(), 188, 189, 190, 191
DosFindFirst(), 264, 265
DosFindNext(), 265, 266
DosGetlnfoBlocks() function, 209
DosGetpriority() service, 209
DosKillprocess() prototype, 194
DosLoadModule() service, 284
Dosopen(), 241, 244, 260-263

prototype, 244
DosQuerycurrentDir(), 269
DosRead(), 241, 259, 260
Dossetcurrentmr(), 269
DossetFileptr() service, 254, 255

reaching end of ffle with, 257
Dosseleetsession(), 201

switching to child with, 2o2
Dossleep() function, 207

parameter,191
Dosstartsession(), 188

service, 198
Dosstartsession() call, failing, 200
Dosstopsession(), 202
DosSuspendThread(), 209
Doswaitchfld(), 193,194
Doswrite(), 241, 248-249, 259, 260

working with Dosopen() and Doswrite(),
249-252

Double value
writing and reading back a, 259-260

Draw, by ouner, 107
Drawing lines and boxes,176-177

Dynamic hnk libraries
creating a simple, 273-275
creating and using, 271-293
definition ffle, 273
.DLL file, 273
.OBJ file in, 273
source code file in, 273

Dynamic linking, 19
advantages of, 272-273
contrasted to static linking, 272
defined, 271-272
inplicatious of, 293
runtime, 283-293

Dynhnk, 271. Scc ¢Jso Dynamic hnking
defined, 19

Dynlink functions, 273
accessing, 275
data in, 273
declaring, 273

Dynhnk hbraries
creating simple, 274-275
examples, 280-282
linked to main program, 272
loading, 284
unloading, 286

Dynlink routine, upgrading or repairing, 272-273

Enter button, 98
Entry fields, 150-152

defined, 138
messages, 152

Environment variable, as null terminated strings,
190

Environments, inheriting a current session's, 199
EOF (end of file) character, 254
Error returns, checking for, 250
Errors

and BEEP.EXE program, 201
and Dosstartsession(), 201
and WinMessageBox(), 98
checking for,198, 250

types of, 250
Event semaphores, 215, 216, 217

estabhshing two, 219
example, 218-220
opening, 220

Exclamation point icon, 99
Exec Flag parameter

values of, 189
with macros, 189

Index 299

Execute
asynchronously, 189
programs, 188-191
synchronously, 189, 190

Execution, concurrent,188
Exfunc(), 197
Exit function hst, creating a, 196-198
EXPORTS command

hnker, 279
options in, 279

Fail buffer,189
Failing to execute a program, 189
Field length, 199
Fields, entry,150-152
File dynhnk functions, 286
File handles, 243, 254

obtaining vahd, 244
releasing, 248

File I/0, 241-269
subsystem services, (table, 242-243)

File mode values, (table, 247)
File pointers, 244

automatically updated, 252
moving, 254
sending to end of file, 257
setting value of, 244

File utihty library, creating, 286-293
Files

accessing, 245
appending to a, 257-258
compiling .RC, 104
definition of, 60-61
hsting name and length of, 266-267
opening and closing, 244-248
opening variation, 251
reaching end of, 257
reading from, 252-254
search for specific, 266

types of, 47
whting to, 248-249

Flags, 214, 217
attribute, (table, 232)
setting and clearing, 214
used to control seriahzation, 215
value, 214
write+to-device, 246

Flat model, 9
flFlags variable,170
Frame handle,162
Functions

accessing dynamically loaded, 284-285
main, 46
window, 46

Global descriptor table (GDT), 12
Graphical user interface (GUI), 42
Graphics

current position approach to,175-176
example, (fllus., 181)
functions, 176
setting the current position,177-178
using, 175-181

Graphics images
bitmapped, 43
defined, 43

Graphics program, 178-181
speed, 176

Graphics Programming Interface, defined, 45.
ScC flJso GPI

Graphics subsystem, screen coordinates for, 176
Graphics system, traditional, 176
Group, starting a multiple choice, 107
Gpi Box() function, 176, 177
GpicharstringAt() prototype, 67
GpiLine() function, 176, 177
Gpiset prototypes, 70-72
Gpisetcurrentposition(),177
Gpisetpel() function,176,177

Handle, 145
built-in, 263, (hst, 263)
defined, 47
ffle, 243
obtaining a file, 243, 244
parameter, 163, 165

Handle_msgQ, 56
Handle_window, 56
Hard disk, displaying information about, 286
Header files

and C program, 26
and the compiler, 26
and #fdef, 26
using standard, 26

HELP style, 114
Horizontal hne divider,107

Iacobucci, Ed, 6
IBM

and Digital Research, 4

300 0S/22.0 programming

development of OS/2 by Microsoft and, 6
use of DOS by, 4

IBM Presentation Manager Programming
Reference, 124

Icon
custom, 199
default, 162-164

Icon and mouse pointer
creating the,170-171
displaying the, 166-169
displaying the custom,172-175
system-defined, 161 -170
using custom,170

Icon and mouse pointer test, custom, (illus., 175)
Icon editor screen, (illus., 171)
Icon images, defined, 43
Icon view, 155
IconFile field, 199
Icons

for mininizing apphcatious, 163
graphics and, 161-181
standard mininize and maximize, 49
system defined, (table, 164)

idsession, 202
value, 202

Ignore button, 98, 99
IMPLIB utihity program, 276

hnking with, 276
Import libraries, 276

creating, 276, 282
IMPORTS corrmand, hnker and, 279-280
Information, displaying,107
Information icon, 99
Include symbols, definable, (table, 27-28)
Inheritance flag, controlhng, 246
Inheritopt, 199
Initxpos field, 200
Initxsize field, 200
hitYPos field, 200
InitYsize, 200
Integer, 32-bit, 47
Intel 8080 CPU, 4
Intel 8086 CPU, 5-6
Intel 8088 CPU, 5-6
Intel 80286 CPU, 5-6
Intel 80386 CPU, 6

and OS/2, 7-14
architecture of the, 7-9
modes of operation of chips, 7
operational modes, OS/2 and the two,

13-14

protected mode, operating in, 9

real mode, operating in, 9
registers, 18-19, (iuus., 10)

Intel 80486 CPU, 6
Interprocess communication,16-17. See ¢Jso IPC
Interrupt descriptor table (IDT), 12
I/0 (Input/Output)

intermpt driven, 17
privilege level, 13
privileges, 13

I/0 errors, returning, 246
IPC (inteaprocess communication), 231-234

Kernel, 17
Key

auto-repeated, 76
scan code, 76
value of, 115

Keyboard
adding lines of text from, 257-258
opening, 261
reading and writing to screen and, 260-263
reading keys from, 80

Keyboard input, reading, 76
Keypress

flag values, (table, 76)
responding to a, 75-87

Keys
and a break signal, 80
and a make signal, 80

Keystroke information, encoded, 76
Kildahl, Gary, Digital Research founder, 4

Letwin, Gordon, 6
Libraries, dynamic fink

creating and using, 271-293
ffles, 273

Libraries, import, 276
LIBRARY command, naming fibrary and

determihing dynhnk function by, 278
Line, drawing a dividing, 107
Line feeds, and GpicharstringA(), 67
Linker, functions of, 271-272
Linker commands, 60
List box messages, additional information for, 145
List boxes, 144-150, 152

and receiving messages, 145
default for, 144
defined, 138, 144

generating messages with, 144
initializing, 144, 145-146

Index 301

processing, 146-150
responding to, 144-145
sanple, (illus.,151)
sending messages to, 145

Load paraneter,165
Loader, OS/2, 272

final hnking by, 272
Loc paraneter, 67
Local description table (LDT), 12
Long, 32-bit

defined, 47

Macros
combining, 98
for extracting data from a MPARAM

variable, (table, 65)
for passing and extracting data, 64-65
for passing data through a MPARAM

variable, (table, 64)
names for color settings, (table, 71)
used for open mode, (table, 235)
used for option,105

Main function,169,170
defined, 46

Make signal, 80
Memory

allocated, 231
overcommitting by OS/2,13,18
region of, 51
segments, 9
640K, 6

Menu accelerator keys, adding, 114-118
Menu boxes, defined, 43-44
Menu messages, receiving, 109
Menu option, automatically selecting a, 114
Menu program, sample, 109-113
Menu resource

displaying in a window,106
using a,109

Menu styles, types of, (table, 107)
MENIITEM, 106
Menus

built-in support for, 103
bypassing, 114
creating simple, 105-106
defined in a resource file,105
fixed in memory,105
included in a program,106-108
introducing,103-104
loaded,105
moved in memory, 103

options for creating, 105
removed from memory, 105
sample output from, (illus.,113)

Message, processing the WM_PAINT, 66-70
Message box, sample, (illus., 103)
Message box types, common, (table, 99)
Message boxes, 98-102

and menus, 97-118
defined, 98
displayed by the mouse button, 99
displaying, 99

Message handler, default, 47
Message loop

defined, 47
example, 55
terminating a, 48

Message queue
and system default, 52
closing the, 55-56
creating a, 52
request failure, 52
size of, 52
structure, 52

Message values, 64
Message WM_CHAR, 76
Messages

and 32-bit values, 63, 64
common, (table, 59)
default processing of, 46, 60
defining and generating, 92-96
defining and generating custom, 92
different types of, 58
dispatching, 48
displayed at mouse pointer location, 89

generating custom, 93
generating Presentation Manager, 91-96
in the integer mess, 56
mouse, 88-91

posted by WinpostMsg() API function, 92,
93

processed, 46
processing, 63-96
processing multiple dialog box, 131
range of, 55
receiving, 56
retrieved by WinGetMsg(), 55
sent to a program, 56

Micro-PS, defined, 66
Mode parameter, creating value of, 246
Module parameter, 54
Mouse

and graphics program, 178

302 0S/22.0 programming

buttons, 88
default, 165
defined, 43
leaving the foous, 169

Mouse messages
passed to the WinDefwindowproc()

function, 88
responding to, 88-91

Mouse pointers. Scc ¢Jso Icons
copying, 163
defined, 162
hot spot, 162
loading a custom,171
setting the, 165
system defined, (table, 164)

Mouse position
displaying the current, 93
erasing the, 93

MSG structure, 47
Multitask, and multiple-CPU computer, 187
Multitask routines

and allocation of time slices,187
design the order of, 186
executing,186
scheduhing, 186-187

Multitasked codes, writing, 187
Multitasking. Scc #Jso Task

in software development, 185
in word processing,185
Intel-created environment, 7
introduction to, 185-211
leaming effective use of, 239
non-preemptive, 44-45
on process and thread levels, 186
model, 15-16
operating system, 44
preemptive, 44
with asynchronous and synchronous

exeoution, 189
Multi-thread programs, semaphore solution to,

218-220
Multiple threads, synchronizing, 228
Mutex semaphores, 215, 216, 220-221

closing, 223-224
creating, 221
example, 221-224
owned, 220
releasing, 221
requesting ownership of, 221
unowned, 220

Muxwait semaphores, 215, 216, 224-227
creating a, 224-225

example, 225-227

prototype, 225

NAME command, purposes of, 280
Naming conventions, 30-31
No button, 98
Non-menu input, 44
Normal-PS, defined, 66
Notebook, functions of the, 154
Notebooks, 153-154

defined, 139

.OBJ file, 273
converting to dynlink file, 273

Offset
and flat memory model, 11
defined, 11

0K button, 98
0K pushbutton, 99
Open mode, macros used for, (table, 235)
Openflags parameter, 250

changing value of, 251
0rdercode paraneter, 197
0S/2

and C standard library, 25
and 80386, 7-14
and 80486, 7
development, 4
essentials,14-18
heritage of, 3-6
history, 4
multitasking, 44-45
overview of, 3-20

philosophy, 20
protection strategy, 17
session-based services, (table, 188)
versions, 6

0S /2 prograrrming
fundamentals, 21-37
introduction to, 1-20

0S/2 Thread-based services, (table, 203)
output

directed to intemal buffers, 87
generated by computational means, 87

0utputting information, 84
0utputting routine, completed, 75
0utputting text, 65-75
Civerwriting, file, 251-252

Index 303

Parent
child of a, 199
independent of a, 199
program, 188
waiting for the child to finish,192, 193

Parent window, handle of the, 53
Parent handle, 53
pArg point parameter, 189
Parml, 145
Parml and Parm2, 145, 146
Pathnane, directory, 269
pEnvpoint parameter, 189
Pfn parameter, function of, 196
PgmHandle, 199
Pgmlnputs, 199
PgnIName, 199
PgmTile, 199
Pid paraneter, 193, 195
Pidsession parameter, 200
Pipes' 234

buffers, 235
controlling mode of, 235
creating, 234-235
example program, 237-239
handle, 236-237
naming, 235
use of, 236

pNane, 190
Pointer, turning type into a, 29
Pointers, file, 244

setting value of, 244
Ports

printer, 261
serial communication, 261

Ppid paraneter, 193, 200
Prefix characters, variable, (table, 31)
Pres parameter, 193
Presentation Manager, 19-20

and keyboard input, 76
and program interaction, 44-46
application basics, 4647
common interface design, 42
defined, 41-44
features, 42-43
minimal, 48
programming overview, 41-61
prograrrming the, 39-40
with a Graphical User hterface, 42
with the main() function, 48
with the window function, 48

Presentation Manager messages. See ¢Jso
messages

common, 63-64
defined, 63-65

Presentation Manager Programming Reference
need for, 39-40

Presentation Manager programs
and OS/2, 44
length of, 48

produced by the compiler, 49
Presentation Manager services, 51
Presentation Manager skeleton, 48-51

example program of, 51-54
mininal, 49

Presentation space
accessing the, 75
and device context and contour, 65-66
and the screen, 66
defined, 65-66
handle, 67
linking the, 66
obtaining a handler, 66
types of, 66

Printer ports, 261
Printf() function, 65
Printing screens, alternating, 191
Priority class, 208
Problems, termination process, 197
Process

defined, 15
errors, 198
functions, 188
kiuing a,194-195
leading and executing another, 188
problems with the termination of a, 197
returning information block,188
second,188
starting a,188-192, 198
stopping the,195
ternhating, 188
termination and registering functions, 188
waiting for termination of, 192-194

Processes
communication between with semaphores,

231-234
multiple,187-198
threads compared to,187

Producer-consumer relationship, 224
Program

caued by OS/2, 44
killing a, 113
overview of the OS/2, 3-20

304 0S/22.0 programming

termination, 55-60
with unnecessary messages, 58

Program maintenance, simphfied by dynamic
hnking, 272

Prograrrming
in a 32-bit environment, 36~37
introduction to OS/2,1-20

Programs
affecting each other, 17
writing for multitasking operating system,

213-214
Protected mode

advantages of, 11
real versus, 11

Protected mode address
advantages, 12-13
calculation, 11-12

PS/2 PCs, 6
Psd parameter, 198
Pushbutton control, defined, 120
Pushbuttous, 138, 143

Question mark icon, 99

Radio buttons, 138, 143
denoting,107

Random access, byte-addressable, 254-257
Random access operations, supporting, 261
.RC file, converted into a .RES file,104
.RES and executable files, recombining, 136
.RES file, 104
Resource compiler,104

and creating menus,105
automatically executing the, 104
invoking the,104,113
RC.EXE, 104

Resource files, 104
Resource parameter, 48

using a, 107
Resources

added to .EXE file,104
defined, 104

processing at different times, 214
serializing access to shared, 213
usin8' 104

Retry button, 98, 99
Row or column, begirming a new, 107
Runtime dynamic linking, 283-293

program, 285
services, (table, 283)

Scan code, obtaining the, 77
Screen, 263

oroup, 198
output, 84-87
writing message to, 264

Scroll, request for a horizontal and vertical, 60
Sector, full, 248
Segment, and offset, 11
Segment/offset memory, 9
Semaphore handle, 221, 224, 225
Semaphore services, 215-217, (list, 216)
Seinaphores, 206, 215, (table, 216)

choosing the right, 215-216
combinations of, 224
creating and accessing, 215-216
event, 215, 216
mutex, 215, 216
muxwait, 215, 216
opening by name, 220
using to seriafize access to a shared

resource, 220
Sequential read requests, 248
Serial communication ports, 261
Serialization, 213-239

problem, 213-215
result of failure to use, 227

Session
creating a new, 198-202
selecting and stopping a, 201-202
starting a new,188
stops a, 188

Session foreground, making a, 188
Session functions,188
Session status, setting a, 188
Session types, five, 199
Session-based services, (table,188)
Share attribute, 246
Shared memory

between processes, 231-234
creating block of, 231

Shared memory access, attribute flags for,
232-233, (table, 232)

Shared resource, seriahzing access to, 213-224
Size parameter, 67
Slider control, sample, (illus., 160)
Sliders, 156-159

defined, 139, 156
DosBeep and, 156
variable range and, 156

Spin buttons, 153
defined, 138

Index 305

State buttons, 138
Static linking, 272

contrasted to dynamic linking, 272
Standard devices, OS/2, 263-264
Standard error, default, 263
Standard input, default, 263
Standard output

automatic opening and closing of, 264
default, 263
writing message to, 263-264

Stop sign icon, 99
String points, 67
Submenu, 107

multiple choice, 107
SUBMENU, 72

keywords, 106
Subroutines, 7
Switch statement, 56, 58, 88
Synchronizing, activity, 215
Synchronization, defined, 17
System menu, 49

Tasks, 15
serializing, 230

Terminated program name, null, 189
Terrfuting

child process and Dossleep(), 195
child process with a parent, 194
process normauy, 197

Ternrfution
code, 196

program, 55-60
queue,199
thread, 205
unexpected parent, 196

TermQ, 199
Test and set operation, 215
Text

adding lines of from keyboard, 257-258
outputting, 65-75
reading line of, 261-263

Text file, scanning, 255
Text paraneter, 98
Text view, 155
32-bit environment, programming in a, 36-37
32-bit values, holdings of, 64
Thread. See flJso Threads

functions, 203
keeping alive the main, 205-206
last, 203
main, 203

priorities, 208-209
programs, 202
restarting a previously stopped, 209
restarting a suspended, 203
setting a priority for a, 202, 203
suspending execution of a, 203, 209-211, 217
suspending the calling, 207-208
waiting to finish, 205-207

Thread-based multitasking system, 16
Thread-based services, (table, 203)
Threads. See ¢Jso Thread

communication among, 206
compute-bound, 207
creating, 203-205
creating and executing two, 204
defined, 14, 202
flag and, 206
in semaphore use, 215
multiple, 203
priority levels of, 208
process and number of, 203
processes and tasks, 14-15
running, 16
standard C libraries and, 205
starting and stopping, 228
temination, 205

Time slice, defined, 15
Time-out value, adding in event semaphore, 219,

225
Tracapt, 199
Tracing, new session,199
Tree view, 155

uiTerm code parameter, 196
Unit (duster), 267
Uusigned long, 32-bit, 47
User interface windows, types of, 97

Value sets, 155
defined, 139

Video mode, for Presentation Manager, 42
Virtual 86 mode, 13-14
Virtual key, 114

and scan codes, 82
as an accelerator, 115
code, 115, (table, 77-79)
defined, 115
macros, 115

Virfual memory, 18
defined, 12

306 0S/22.0 programming

segmented models, 9-11
Virtual page memory, 12
Virtual screen, copied to Windows, 87
VOID pointers, 64

while loop, 207, 214
WinBeginpaint() prototype, 66, 67
WincreateMsgQueue(), 52
Wincreatestdwindow(), 53-54, 137, 162, 163, 170,

(table, 54)
WinDefDlgproc() prototype, 121
WinDefwindowproc() prototype, 60
WinDestroyMsgQueue() prototype, 56
WinDestroywindow() prototype, 56
WinDismissDlg() prototype, 122, 125
WinDispatchMsg(), 48, 55
WinDlgBox() prototype, 122
Window class, 162

defined, 47
name of the, 53
registering a, 52-53

Window components, defined, 45-46
Window function

address, 53
defined, 46
example, 56-60
in Presentation Manager apphcation, 56
recognizing common messages with, 56-58
routing messages to the, 55
template, 56-58

Window information, redrawing, 84
Window output, redisplaying, 66
Window storage bytes, 53
Window style, 53
Window system, initialization of the, 51
Window system interface, deactivating the, 55-56
Window title, 54
windows

child, 97
closing active, 55-56
control, 137-160
creating, 53-54, 58, 59, 97, 137
erasing, 60
invalidated, 84

redrawing, 59-60, 87
refreshing, 60, 66, 67,
restoring the, 87
standard, 49, (fllus., 45)
starting, 199,
user interface, 97
writing a hne of text to the, 67

WinEndpaint(), 68
WinGetMsg()

message termination and, 55
prototype, 55

WinGetps() function, 75, 80
Winhitiahze(), cauing, 51
WinlnsertLboxltem() macro, 146
WinLoadpointer(),171
WinMessageBox(), 98, 99
Winquerypointer(), 165
WinQuerysyspointer(),162,165,169,170,171
WinRegisterclass(), 52, 53
WinReleaseps() function, 75, 80
WinsendDlgltemMsg(),145, 146, 162
Winsetpointer(), 165
WinTerminate() prototype, 56
WM_CIIAR message, 76-77

and associated code, 84
and signals, 80

WM_COMMAND message, 109, 114

generating the, 114
WM_SYS COMMAND message, 107
WM_HELP message,107,114
WM_PAINT message, 66-70, 84, 87

X,Y location
accessing the, 89
in pels, 67

Yes button, 98
Yes and No pushbuttous, 99

0:32 mode of addressing, 9

©©©

©®©
1

:®®®

i

®©
Aboul Ihe Aulhors
Expert programmer Herb Schildt, author of more than
35 computer books, has sold over 1 million copies of his
books worldwide. His best-sellers include The Art of C:
Elegant Programming Solutions; C: The Complete
Reference, now in its second edition; C++: The
Complete Reference; Turbo C++: The Complete
Reference, now in a second edition; Teach Yourself C;
Teach Yourself C++; C: The Pocket Reference, as well
as several books on DOS. Schildt is president of
Universal Computing Laboratories, Inc., a software
engineering firm. He holds a mas-
ter's degree in computer science
from the University of Illinois at
Urbana-Champaign.

Copeprs OSJ
Release 2.0

Robert Goosey has been a programmer for over 10 years
and a technical editor of many C and C++ books. A
graduate of the Computer Science Department of the
California State University, Hayward, Goosey is currently
employed as an engineering project manager developing
C and C++ compilers, assemblers, and debuggers at
Microtec Research, Inc., an international corporation
based in Santa Clara, California.

T]ottpr F ast-Tprach Gttide
to OS/2 2.0

Skill Level
Guide

H Beginner
Ea Intermediate
H Advanced
I For Every user

Get up to speed fast using this accelerated guide to programming OS/2 2.0, the
advanced operating system from IBM.

Experienced programmers Schildt and Goosey have distilled months of research into a
well-organized and highly readable discussion of OS/2. You'll save countless hours of
poring through thousands of pages of OS/2 documentation.

OS/2 2.0 P1.ogramming begins with an overview of OS/2 2.0 programming, and
quickly guides you through the basics of programming the Presentation Manager, and
then onto more advanced topics of this complex operating system.

• Cpreate Pgrese7itation Managepr Pgroggraiilils quickly and easily.

® Learn how to wprite m%leitash6ng Pproggruns.

® Find out how to communicate between m%le6ple tasks.

• Bttild and use dynunic hnh hbgraries.
• W;grite your own cttstom unen%s and dialog bottes.

• Learn how to ttse ggraph6cs to enhance your Pprogpra¢iliis.

• Read and wpr6te to dish files like an expegrt.

• Undegrstand how OS/2 iiliianages your Pgroggraiilii.

This book is a step-by-step companion to the volumes of OS/2 technical information.
with OS/2 2.0 Programming, you'u soon lean how to program for and uthize the
power of the OS/2 2.0 operating system.

ISBN I-07-BBL]LO-5

780078 819100

±E| . qE

	Cover
	Contents
	Introduction
	Part One
	Introducction to OS/2 Programming
	Chapter 1.- OS/2: An Overview
	Chapter 2.- Fundamentals of OS/2 Programming

	Part Two
	Chapter 3.- Presentation Manager Programming Overview
	Chapter 4.- Processing Messages
	Chapter 5.- Message Boxes and Menus
	Chapter 6.- Dialog Boxes
	Chapter 7.- Control Windows
	Chapter 8.- Icons and Graphics

	Part Three
	Exploring the API
	Chapter 9.- An Introduction to Multitasking
	Chapter 10.- Serialization and Inter-process Communication
	Chapter 11.- File I/O
	Chapter 12.- Creating and Using Dynamic Link Libraries

	INDEX
	Aboul the Aulhors
	BackCover

